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Abstract: Automatic methods for an early detection of plant diseases (i.e., visible 

symptoms at early stages of disease development) using remote sensing are critical for 

precision crop protection. Verticillium wilt (VW) of olive caused by Verticillium dahliae 

can be controlled only if detected at early stages of development. Linear discriminant 

analysis (LDA) and support vector machine (SVM) classification methods were applied to 

classify V. dahliae severity using remote sensing at large scale. High-resolution thermal 

and hyperspectral imagery were acquired with a manned platform which flew a 3000-ha 

commercial olive area. LDA reached an overall accuracy of 59.0% and a κ of 0.487 while 

SVM obtained a higher overall accuracy, 79.2% with a similar κ, 0.495. However, LDA 

better classified trees at initial and low severity levels, reaching accuracies of 71.4 and 

75.0%, respectively, in comparison with the 14.3% and 40.6% obtained by SVM. 

Normalized canopy temperature, chlorophyll fluorescence, structural, xanthophyll, 

chlorophyll, carotenoid and disease indices were found to be the best indicators for early 

and advanced stage infection by VW. These results demonstrate that the methods 

developed in other studies at orchard scale are valid for flights in large areas comprising 

several olive orchards differing in soil and crop management characteristics. 

Keywords: Verticillium wilt; early detection; hyperspectral; thermal; support vector 

machine; linear discriminant analysis 
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1. Introduction 

Olive (Olea europaea L.) is one of the most important crops in the Mediterranean Basin, 

representing 95% of the world production. Spain is the leading olive-producing country with 25% of 

the world’s acreage and nearly 39% of the production [1]. Verticillium wilt (VW), caused by the 

fungus Verticillium dahliae Kleb., is the main soil-borne disease threatening this crop worldwide [2]. 

In Spain, VW is of increasing concern for olive production because of its rapid spread and  

increasing severity associated with recent changes in cropping practices implemented to increase olive 

yields [2,3]. These changes include use of self-rooted planting stocks to establish high-tree-density, 

drip irrigation, reduced or no tillage and high inputs of fertilizers in newly cultivated soils or fertile 

soils [4] previously grown with susceptible crops to V. dahliae, such as cotton [3]. 

Currently, no control measure applied singly is fully effective for the management of VW of olive, 

however, an integrated disease management strategy is the best way to manage the disease, combining 

the use of preventive, pre-planting and post-planting control measures [5]. Post-planting control 

measures include: cultural practices (e.g., irrigation managing, weed control and tillage practice), soil 

solarization and organic or biological amendments. Post-planting VW control measures would be more 

efficient if VW-affected trees patches within fields are identified at early stages of disease 

development (i.e., visible symptoms) in order to mitigate the spread of the pathogen and successive 

infections to neighboring trees [6]. However, visual inspection of disease symptoms at early stages of 

development in the field is time-consuming and expensive [7]. Remote sensing for the detection of 

damage caused by soil-borne plant pathogens has proved to be the best-fit technology for optimization 

of integrated pest management. These methods are rapid and reliable, allowing real-time plant disease 

monitoring for disease control and management [8,9]. 

V. dahliae infects the plant through the roots and colonizes its vascular system, blocking water flow and 

eventually inducing wilt symptoms [10]. This damage results in a significant reduction in leaf transpiration 

rate which finally leads to leaf chlorosis and defoliation, causing a change of spectral reflectance [11]. 

Chlorophyll content tends to decrease in infected plants, showing a higher reflectance in the visible (VIS) 

green (550 nm) and red-edge (650–720 nm) regions. Stressed plants also show a drop in canopy density 

and leaf area that leads to a decrease of spectral reflectance in the near-infrared (NIR) range (680–800 nm). 

In addition, the thermal-infrared (TIR) region (8000–15,000 nm) is highly suitable for the detection of V. 

dahliae infection due to the decrease in transpiration rate which induces stomata closure, reducing 

evaporative cooling and increasing canopy temperature. Considering these changes in the spectrum of 

infected plants, disease symptoms could be remotely detected in the VIS, red edge, NIR and TIR regions. 

Recent work on VW in olive trees demonstrated the success of high-resolution thermal and 

hyperspectral imagery acquired with an unmanned aerial vehicle to early detect V. dahliae infection in 

two olive commercial orchards in southern of Spain [12]. Normalized canopy temperature (Tc-Ta), 

chlorophyll fluorescence and blue ratios B/BG/BR were found to be the best indicators of early stage 

infection by VW while the Photochemical Reflectance Index (PRI), structural, chlorophyll and 

carotenoid indices detected only moderate to severe V. dahliae infection. These results obtained at the 

canopy level using airborne imagery were confirmed by those obtained by Calderón et al. [13] at leaf 

level under controlled conditions. SPAD readings (as an indicator of leaf chlorophyll content), leaf 
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chlorophyll fluorescence and normalized leaf temperature were demonstrated to be early VW 

indicators while the ethylene production and PRI detected only advanced stages of VW development. 

Up to now, the remote sensing methods discussed above have only been used to detect VW 

successfully at local scales, in particular, in olive orchards of no more than 10 hectares using small 

unmanned aircraft. Under these small-scale conditions, unmanned aerial platforms obtain high resolution 

imagery in short flights of 10–40 min that avoid large ambient temperature variations, large changes in 

illumination levels or atmospheric differences during the flight. In addition, the methods were tested in 

olive orchards with homogeneous tree structural and crown shape characteristics as well as with a 

generally uniform background types, understory and soil types across the field. The collection of very 

high-resolution hyperspectral and thermal imagery over large areas is only possible using manned 

aircraft or high endurance unmanned aerial systems (UAS) flying over long periods to cover extensive 

areas at the optimum resolution (i.e., 30–50 cm pixel size) generating mosaics comprising several fields 

of very different structural and architectural characteristics (i.e., planting patterns, crown shapes and 

sizes, and background/soil types). Therefore, it is critical to assess methods to detect VW incidence and 

severity over large areas in order to design VW control strategies at large scale. In this way, the indices 

identified as indicators for the early and advanced VW detection at local scale [12] should be tested at 

larger scales to demonstrate their robustness and accuracy over orchards of varying types and conditions. 

When acquiring hyperspectral imagery, large amounts of data are obtained and calculated from each 

single tree; therefore, the analysis is complex and different approaches can be used to obtain 

satisfactory results [9]. In this study, large hyperspectral (50 cm) and thermal (62 cm) mosaics were 

obtained (ca. 3000 hectares) comprising a total of 130 fields in order to test different methods for the 

successful detection among VW severity levels using two different supervised classification 

approaches: linear and non-linear classification methods. On the one hand, linear classification tries to 

find linear functions that separate the observations into the different classes. Several linear 

classification methods have been used to successfully classify remote sensing data for disease 

detection, such as linear discriminant analysis (LDA) [14], principal component analysis (PCA) [15] 

and logistic regression analysis (LRA) [16]. For the data analyzed in this study, we selected LDA 

rather than LRA because LDA is a more powerful and efficient analytic strategy when the assumptions 

of multivariate normality of the independent variables within each class are met, the dependent 

variable has more than two groups and not all classes have large sample size [17]. Moreover, LDA is 

superior to PCA in classifying remote sensing data because PCA changes the shape and location of the 

original data when transformed to a different space whereas LDA only tries to provide more class 

separability and draw a decision region between the given classes [18]. The classification criterion of 

LDA [19] is based on the pooled covariance matrix yielding a linear function and each observation is 

placed in the class from which it has the smallest generalized squared distance. On the other hand, 

when classes are not separable by linear boundary, non-linear classification methods are more 

appropriate. For disease detection from remote sensing data, artificial neural networks (NN) [20] and 

support vector machines (SVM) [21] have been the most used non-linear classification methods. SVM 

methods have been selected in this study because of the superior performance shown, particularly with 

respect to the classification of hyperspectral remote sensing data [22]. The advantages of SVM over 

NN [23] are: (i) the solution achieved by SVM is global and unique due to quadratic programming;  

(ii) computational complexity of SVM does not depend on the dimensionality of the input space so it is 
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usually much quicker for large data sets; (iii) SVM is less prone to overfitting; (iv) SVM has few 

parameters to consider; and (v) has good generalization capability with few training samples. SVM is 

based on statistical learning theory [24] which aims determine a hyperplane that optimally separates 

two classes. The optimum hyperplane works in the manner that maximizes the margin between classes. 

This study describes an automatic procedure to classify VW infection and severity in olive growing 

areas with a special focus on the early detection to design focalized VW control strategies at large scale. 

Because VW is related to several physiological modifications which are reflected in spectral changes,  

a method based on the combination of various vegetation indices calculated from high-resolution 

hyperspectral and thermal imagery was applied using LDA and SVM classification methods to fully 

exploit their combined information. 

2. Material and Methods 

2.1. Study Site Description 

The study site is located in Écija (Seville province, southern Spain) (37°40'46"N, 4°59'41"W) and 

consisted of a 3000-ha commercial olive area (Figure 1). Within this area, several olive orchards were 

selected differing in soil and crop management characteristics that are shown in Table 1 and Figure 1. 

All plots were drip-irrigated. 

 

Figure 1. Overview of the olive area flown with the manned platform located in Écija 

(Seville province). Verticillium wilt severity was assessed in the plots which are shown in 

yellow. High-resolution detail of each individual olive plot assessed in this study was 

shown with lettering (a–i) in agreement with the plot lettering (a–i) in central image. Note 

differences in soil and crop management among plots. 
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The climate of the area is Mediterranean characterized by warm and dry summers and cool and wet 

winters with an average annual rainfall of 550 mm, concentrated from autumn to spring climate [25]. 

Table 1. Agronomic characteristics of olive plots assessed in this study. 

Plot Olive Cultivar Plant Age (Years) Plant Density (Trees per ha.) Soil Management 

1 Picual 30 204 Non tillage 

2 Hojiblanca 20 204 Tillage 

3 Picual 20 204 Tillage 

4 Hojiblanca 15 204 Tillage 

5 Picual 20 204 Tillage 

6 Picual 15 357 Tillage 

7 Hojiblanca 30 123 Non tillage 

8 Picual 20 204 Tillage 

9 Picual 30 204 Non tillage 

2.2. Verticillium Wilt Assessment 

Incidence and severity of VW symptoms were assessed in the summer of 2013 in nine selected plots 

spatially distributed throughout the study site, collecting data for 5352 olive trees. Disease severity 

(DS) was assessed by visual inspection of every tree for foliar symptoms and assessment on a 0–4 

rating scale according to the percentage of foliage with disease symptoms, where: 0 = 0%, 0.2 and  

0.5 = initial symptoms, 1 = 1%–33%, 2 = 34%–66%, 3 = 67%–100%, and 4 = dead plant [12]. These 

VW severity levels were then regrouped in five VW severity classes: asymptomatic (DS = 0), initial  

(0.2 ≤ DS ≤ 0.5), low (1 ≤ DS ≤ 1.5), moderate (2 ≤ DS ≤ 2.5) and severe (3 ≤ DS ≤ 4) symptoms 

(Figure 2). V. dahliae infection was confirmed by isolating six stem fragments sampled from each of 

four young symptomatic branches per symptomatic tree as previously described [6]. Identification of 

V. dahliae isolates was based on the morphology of conidiophores and microsclerotia and confirmed 

by molecular typing through PCR assay using primers DB19/DB22/espdef01 [26]. This method 

yielded a polymorphic amplicon of 523 or 539 bp specific to V. dahliae. PCR amplification and gel 

electrophoresis were conducted as previously described [26]. 

2.3. Airborne Hyperspectral and Thermal Imagery Acquisition 

Imagery was acquired from the whole study site on 12 June 2013 using a hyperspectral sensor and a 

broad-band thermal camera on board a Cessna aircraft operated by the Laboratory for Research 

Methods in Quantitative Remote Sensing of the Consejo Superior de Investigaciones Científicas 

(QuantaLab, IAS-CSIC, Spain). Both cameras were flown at 500 m above ground level (AGL). 

Hyperspectral and thermal images were acquired between 10:30 and 12:00 GMT at 50 cm and 62 cm 

pixel resolution, respectively. 

The hyperspectral sensor flown was the visible and near-infrared (VNIR) micro-hyperspectral 

imager (Micro-Hyperspec VNIR model, Headwall Photonics, MA, USA) configured in the spectral 

mode of 260 bands at 1.85 nm/pixel and 12-bit radiometric resolution. It yielded a 6.4 nm full-width at 

half-maximum (FWHM) with a 25-micron slit in the 400–885 nm region. Data acquisition and storage 

rate on board the manned platform was set to 50 fps (frames per second) with 18-ms integration time. 
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The 8-mm optical focal length lens yielded an instantaneous field of view (IFOV) of 0.93 mrad and an 

angular field of view (FOV) of 49.82°. 

 

Figure 2. RGB images showing olive trees with the five different Verticillium wilt severity 

classes: (a) asymptomatic, (b) initial, (c) low, (d) moderate and (e) severe disease symptoms. 
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Radiometric calibration and atmospheric correction methods were applied to the imagery to calculate the 

spectral reflectance, as described Zarco-Tejada et al. [27]. The hyperspectral images were radiometrically 

calibrated in the laboratory using derived coefficients with a uniform light source system (integrating sphere, 

CSTM-USS-2000C Uniform Source System, LabSphere, North Sutton, NH, USA) at four levels of 

illumination and six integration times. Radiance values were converted to reflectance using total incoming 

irradiance simulated with SMARTS model [28,29] and aerosol optical depth measured at 550 nm with 

Micro-Tops II sunphotometer (Solar LIGHT Co., Philadelphia, PA, USA) at the study site at the time of the 

flight [30,31]. This model has been previously used in other studies to perform the atmospheric correction of 

hyperspectral imagery, such as in Zarco-Tejada et al. [27] and Calderón et al. [12]. 

Bidirectional reflectance effects are prominent for airborne sensors operating with wide FOV (e.g., 

in this study the FOV of hyperspectral sensor was 49.82°). Effects are most pronounced in the angular 

range higher than ±30° from nadir [32]. To minimize directional effects, the flight was conducted in 

the solar plane, trying to keep the assessed olive orchards as close as possible to the nadir within 

angular range ±30° from nadir. Hyperspectral reflectance from each training tree was acquired within a 

range in view angle between −21.6° and +18.6° from nadir. These data ensured that training trees were 

not affected by off-nadir pixels acquired on each single frame. Ranges in view angles between training 

trees from the same olive orchard were between 9.3° and 31.4° range. Moreover, due to the large 

along- and cross-track overlap achieved during the flight (>70%), the resulting hyperspectral mosaic 

was not affected by pixels falling on the edge of the imagery. 

Ortho-rectification of the hyperspectral imagery was conducted using PARGE (ReSe Applications 

Schläpfer, Wil, Switzerland). This was done using input data acquired with a miniaturized inertial 

measuring unit (IMU) (MTiG model, Xsens, The Netherlands) installed on-board and synchronized 

with the micro-hyperspectral imager. The mean radiance and reflectance spectra calculated from the 

260 spectral bands obtained by the hyperspectral imager were used to calculate several narrow-band 

hyperspectral indices in agreement to the study conducted by Calderón et al. [12], where their ability 

to detect Verticillium wilt at early and/or advanced stages of disease development was demonstrated. 

The indices that contribute most to the model conducted in this study are shown in Table 2 with regard 

to: (i) tree crown structure; (ii) epoxidation state of the xanthophyll cycle; (iii) chlorophyll a + b 

concentration; (iv) blue/green/red ratio indices; (v) carotenoid concentration; (vi) chlorophyll fluorescence 

and (vii) spectral disease indices. 

Table 2. Overview of the vegetation indices that contribute most to the model conducted in 

this study and their formulations. 

Vegetation Indices Equation Reference 

Structural indices   

Normalized Difference Vegetation Index ܰܫܸܦ ൌ ሺ଼ܴ଴଴ െ ܴ଺଻଴ሻ/ሺ଼ܴ଴଴ ൅ ܴ଺଻଴ሻ [33] 

Renormalized Difference Vegetation Index ܴܫܸܦ ൌ ሺ଼ܴ଴଴ െ ܴ଺଻଴ሻ/ඥሺ଼ܴ଴଴ ൅ ܴ଺଻଴ሻ [34] 

Enhanced Vegetation Index ܫܸܧ ൌ 2.5 ൉ ሺ଼ܴ଴଴ െ ܴ଺଻଴ሻ/ሺ଼ܴ଴଴ ൅ 6 ൉ ܴ଺଻଴ െ 7.5 ൉ ܴସ଴଴ ൅ 1ሻ [35] 

Optimized Soil-Adjusted Vegetation Index ܱܵܫܸܣ ൌ ሺሺ1 ൅ 0.16ሻ ൉ ሺ଼ܴ଴଴ െ ܴ଺଻଴ሻ/ሺ଼ܴ଴଴ ൅ ܴ଺଻଴ ൅ 0.16ሻሻ [36] 

Triangular Vegetation Index ܸܶܫ ൌ 0.5 ൉ ሾ120 ൉ ሺܴ଻ହ଴ െ ܴହହ଴ሻ െ 200 ൉ ሺܴ଺଻଴ െ ܴହହ଴ሻሿ [37] 

Modified Triangular Vegetation Index ܫܸܶܯ ൌ 1.2 ൉ ሾ1.2 ൉ ሺ଼ܴ଴଴ െ ܴହହ଴ሻ െ 2.5 ൉ ሺܴ଺଻଴ െ ܴହହ଴ሻሿ [38] 

Modified Simple Ratio ܴܵܯ ൌ
଼ܴ଴଴/ܴ଺଻଴ െ 1

ሺ଼ܴ଴଴/ܴ଺଻଴ሻ଴.ହ ൅ 1
 [39] 



Remote Sens. 2015, 7 5591 

 

Table 2. Cont. 

Vegetation Indices Equation Reference 

Xanthophyll indices   

Photochemical Reflectance Index (570) ܴܲܫହ଻଴ ൌ ሺܴହ଻଴ െ ܴହଷଵሻ/ሺܴହ଻଴ ൅ ܴହଷଵሻ [40] 

Chlorophyll a+b indices   

Vogelmann ܸܱ1ܩ ൌ ܴ଻ସ଴/ܴ଻ଶ଴ [41] 

Gitelson &Merzlyak indices 1ܯܩ ൌ ܴ଻ହ଴/ܴହହ଴ [42] 

Pigment Specific Simple Ratio Chlorophyll b ܴܾܲܵܵ ൌ ଼ܴ଴଴/ܴ଺ହ଴ [43] 

Transformed Chlorophyll Absorption in 

Reflectance Index 
ܫܴܣܥܶ ൌ 3 ൉ ሾሺܴ଻଴଴ െ ܴ଺଻଴ሻ െ 0.2 ൉ ሺܴ଻଴଴ െ ܴହହ଴ሻ ൉ ሺܴ଻଴଴/ܴ଺଻଴ሻ [44] 

Transformed Chlorophyll Absorption in 

Reflectance Index/ Optimized Soil-Adjusted 

Vegetation Index 

ܫܸܣܱܵ/ܫܴܣܥܶ

ൌ
3 ൉ ሾሺܴ଻଴଴ െ ܴ଺଻଴ሻ െ 0.2 ൉ ሺܴ଻଴଴ െ ܴହହ଴ሻ ൉ ሺܴ଻଴଴/ܴ଺଻଴ሻ
ሺሺ1 ൅ 0.16ሻ ൉ ሺ଼ܴ଴଴ െ ܴ଺଻଴ሻ/ሺ଼ܴ଴଴ ൅ ܴ଺଻଴ ൅ 0.16ሻሻ

 [44] 

R/G/B indices   

Redness index ܴ ൌ ܴ଻଴଴/ܴ଺଻଴ [45] 

Blue/green indices 1ܫܩܤ ൌ ܴସ଴଴/ܴହହ଴ [46] 

Lichtenhaler index 3ܥܫܮ ൌ ܴସସ଴/ܴ଻ସ଴ [47] 

Carotenoid indices   

Pigment Specific Simple Ratio Carotenoids ܴܴܲܵܿ ൌ ଼ܴ଴଴/ܴହ଴଴ [43] 

R515/R570 ܴହଵହ/ܴହ଻଴ [27] 

R515/R670 ܴହଵହ/ܴ଺଻଴ [27] 

Fluorescence   

FLD 3ܦܮܨ ሺ747; 762; 780ሻ [46,48,49] 

Plant disease index   

Healthy-index ܫܪ ൌ
ܴହଷସ െ ܴ଺ଽ଼
ܴହଷସ ൅ ܴ଺ଽ଼

െ
1
2
൉ ܴ଻଴ସ [50] 

The Fraunhofer Line Depth (FLD) principle calculated from a total of three bands (FLD3) was 

applied to the hyperspectral radiance imagery to quantify the fluorescence signal as described by 

Zarco-Tejada et al. [27]. The bands required for the FLD3 method were the band inside de O2-A 

feature (the “in” wavelength indicates the radiance at L762 nm) and the radiances at two wavelengths 

outside and on either side of the O2-A feature, referred as the “out” bands (L750 and L780 nm). 

Previous studies demonstrated successful results in retrieving the chlorophyll fluorescence signal using 

the micro-hyperspectral imager due to the large spectral oversampling (1.85-nm sampling interval) and 

6.4 nm bandwidths [12,27,51]. 

The thermal camera (FLIR SC655, FLIR Systems, USA) delivered 640 × 480 pixel resolution and 

was equipped with a 24.5 mm f1.0 lens, connected to a computer via USB 2.0 protocol. This camera 

operates with a thermoelectric (TE) cooling stabilization, giving us high sensitivity below 50 mK. The 

spectral response was in the range of 7.5–13 μm. Radiometric calibration was conducted in the 

laboratory using a blackbody (model P80P, Land Instruments, Dronfield, UK) at varying target and 

ambient temperatures and through vicarious calibrations using surface temperature measurements. 

Surface temperature was obtained applying atmospheric correction methods to thermal imager data 

based on MODTRAN radiative transfer code, which models the atmospheric transmissivity and 
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longwave upwelling thermal radiation. Downwelling thermal radiation was measured in the field with 

a thermal sensor (LaserSight, Optris, Germany). Since only vegetation temperature is retrieved, surface 

emissivity is considered as 0.98 as an accepted value for natural vegetation [31]. Local atmospheric 

conditions such as air temperature, relative humidity and barometric pressure were measured at the 

time of the flight with a portable weather station (Model WXT510, Vaisala, Finland) (Table 3) and 

used as input into MODTRAN model. Atmospheric correction methods conducted with single-band 

thermal cameras were shown to provide successful estimation of vegetation surface temperature [31]. 

Canopy temperature (Tc), extracted from thermal imagery, minus air temperature (Ta) was calculated 

as a water stress indicator of olive trees (Tc-Ta). 

 

Figure 3. Thermal mosaic (a) obtained with the thermal camera on board the manned 

platform at 63-cm resolution, enabling pure olive crown identification (b). Pure olive 

crowns were identified using automatic object-based crown detection. Mean crown 

normalized temperature (Tc-Ta) calculated from thermal imagery is shown for every 

Verticillium wilt severity class in (c). Mean values of Tc-Ta were supported by the data of 

the 9 plots, consisting of 510, 98, 64, 46 and 38 olive trees which correspond to 

asymptomatic, initial, low, moderate and severe severity classes, respectively. Error bars 

indicate standard errors. Red square (a) is shown in detail in (b). 

Single tree crown temperature and reflectance were extracted from high-resolution thermal and 

hyperspectral imagery (Figures 3a and 4a), respectively, using an automated object-based method. 

Image segmentation was automatically conducted using Fiji package of ImageJ software [52] to split 

a 

c 

b 
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the digital image into multiple regions that made possible to identify single pure tree crowns (Figures 

3b and 4b). Algorithms developed at the QuantaLab/IAS-CSIC were applied afterwards using GRASS 

GIS software [53] to extract feature for each object, calculating temperature and reflectance’s mean 

statistics of all the pixels composing each whole crown (Figures 3c and 4c). 

Table 3. Local atmospheric conditions measured by a portable weather station during the 

flight at 30-min interval. 

GMT Time 

(h) 

Air Temperature 

(°C) 

Relative Humidity 

(%) 

Air VPD 

(KPa) 

Wind Speed 

(m/s) 

Solar Radiation 

(W/m2) 

10:30 32.4 27.3 3.5 0.7 989 

11:00 33.0 26.9 3.7 0.6 984 

11:30 33.3 27.8 3.7 0.8 967 

12:00 33.8 24.9 4.0 0.9 938 

 

Figure 4. Hyperspectral mosaic (a) obtained with the hyperspectral sensor on board the 

manned platform at 50-cm resolution. Pure olive crowns were identified using automatic 

object-based crown detection (b). Sample crown reflectance obtained by the hyperspectral 

imagery from Verticillium wilt asymptomatic, initially symptomatic and severely 

symptomatic olive trees is shown in (c). Red square (a) is shown in detail in (b). 
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2.4. Data Analyses 

Multivariate analyses were used to develop models that detected VW infection and severity. The 

strength of association among normalized canopy temperature (Tc-Ta) and vegetation indices and the 

VW severity classes was assessed by LDA and SVM methods. Every olive tree assessed was 

designated with the presence of VW infection and severity of symptoms, as well as Tc-Ta and 

vegetation indices calculated from the thermal and hyperspectral imagery, respectively. 

First, the STEPDISC procedure of SAS software (version 9.4; SAS Institute, Cary, NC, USA) was 

used to eliminate variables within the model that did not provide additional information or were 

redundant as determined by the Wilk’s lambda method, as well as to add variables outside the model that 

contribute most to the model [54]. The DISCRIM procedure of SAS was then used to generate a 

discriminant function capable of determining the classification accuracy of the dataset, based on the 

pooled covariance matrix and the prior probabilities of the classification groups. Due to the fact that the 

data were not normally distributed, a non-parametric discriminant analysis was conducted specifying a  

k-value for the k-nearest-neighbour rule. In this study, we used a k-value of 4, so each observation is 

classified into a VW severity class focusing on the information from its four nearest neighbours. A 

dataset of 756 olive trees was created by randomly selecting the 10% of the asymptomatic trees and 

including all the trees belonged to the symptomatic VW severity classes. This set was used to run the 

STEPDISC selected model and then DISCRIM for classifying VW severity groups. Then, the 

classification accuracy of the selected model was evaluated by calculating the overall accuracy value and 

the kappa (κ) coefficient, which gives an overall accuracy assessment for the classification based on 

commission and omission error for all classes. The data obtained from the stepwise analysis were further 

subjected to a canonical discriminant analysis using the CANDISC procedure of SAS to separate 

classification variables (VW severity classes) based on linear combinations of the quantitative variables 

(Tc-Ta and vegetation indices). The linear combinations of variables (canonical variates) were then 

correlated with the original VW severity classes. Canonical variates means (centroid values) were 

calculated for each classification variable and significance between means was determined using 

Mahalanobis distance [54]. Individual values for each canonical variate were plotted in a bi-plot for the 

first and second canonical variables and for the first and third ones. 

SVM analysis calculations were conducted using R software [55] with the e1071 [56] package 

which provides an interface to the open source machine learning library libsvm [57]. For multiclass 

classification with k classes, libsvm uses the one-against-one approach, in which k(k − 1)/2 binary 

classifiers are trained and the appropriate class is found by a voting scheme. SVM conducted non-

linear classifications using kernel functions and introducing a cost parameter C to quantify the penalty 

of misclassification errors. The radial basis function kernel was used in this study because it has fewer 

parameter values to predefine and yet has been found at least as robust as other kernel types [58,59]. 

As shown in the Equation (1) of this kernel, the only parameter that needs to be predefined is γ: 

,௜ݔ൫ܭ ௝൯ݔ ൌ ݁ିఊ൉ฮ௫೔ି௫ೕฮ
మ

 (1)  

In order to specify the best radial basis function and to find an appropriate factor for penalizing 

classification errors, the parameter C and γ have to be optimized. In this respect, we applied a grid 

search method using cross validation approach as recommended by Hsu et al. [60]. The main idea 
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behind the grid search method is that different pairs of parameters are tested (C and γ in this case) and 

the one with the highest cross validation accuracy is selected. 

3. Results 

In the summer of 2013, 4.94% of the trees assessed at the field level were infected by VW, with a 

mean DS in symptomatic trees of 1.41 (0–4 rating scale). Taking into account symptomatic trees, 

40.08% showed initial DS symptoms, 25.92% had low DS symptoms, 18.62% had moderate DS 

symptoms and 15.38% of symptomatic trees had severe DS symptoms. 

Table 4. Variables selected from normalized canopy temperature (Tc-Ta) and vegetation 

indices in the forward stepwise discriminant analysis to determine the severity of 

Verticillium dahliae infection in olive trees. 

Source Wilks’ Lambda Partial R-Square F Value Pr > F Pr < Lambda 

OSAVI 0.833 0.1666 37.52 <0.0001 <0.0001 
LIC3 0.718 0.1385 30.13 <0.0001 <0.0001 
Tc-Ta 0.676 0.0585 11.63 <0.0001 <0.0001 
GM1 0.586 0.0397 7.71 <0.0001 <0.0001 

R515/R570 0.610 0.0375 7.26 <0.0001 <0.0001 
PRI570 0.565 0.0349 6.74 <0.0001 <0.0001 

R 0.654 0.0321 6.20 <0.0001 <0.0001 
TCARI/OSAVI 0.634 0.0304 5.86 0.0001 <0.0001 

EVI 0.501 0.0295 5.61 0.0002 <0.0001 
TCARI 0.549 0.0289 5.52 0.0002 <0.0001 
MTVI1 0.464 0.0288 5.43 0.0003 <0.0001 
R515/R670 0.455 0.0200 3.73 0.0051 <0.0001 

NDVI 0.516 0.0198 3.73 0.0052 <0.0001 
BGI1 0.483 0.0191 3.58 0.0066 <0.0001 

PSSRc 0.447 0.0183 3.42 0.0088 <0.0001 
TVI 0.492 0.0165 3.08 0.0156 <0.0001 
MSR 0.435 0.0156 2.90 0.0213 <0.0001 

HI 0.534 0.0148 2.77 0.0262 <0.0001 
FLD3 0.526 0.0143 2.68 0.0310 <0.0001 
VOG 0.542 0.0132 2.49 0.0421 <0.0001 

PSSRb 0.442 0.0103 1.91 0.1067 <0.0001 
RDVI 0.478 0.0098 1.81 0.1250 <0.0001 

In the forward stepwise discriminant analysis, 22 out of 34 indices were selected (Table 4). In this 

model, Tc-Ta and the indices calculated from the thermal and hyperspectral imagery, respectively, that 

contributed most (partial R-square > 0.05) to discriminate among VW severity classes were OSAVI, 

LIC3 and normalized canopy temperature (Tc-Ta), followed (partial R-square > 0.03 < 0.05) by GM1, 

R515/R570, PRI570, red index (R) and TCARI/OSAVI. HI, FLD3, VOG, PSSRb and RDVI showed the 

lowest contribution (partial R-square < 0.015) to the discriminant function (Table 4). Use of LDA 

allowed classifying the sampled olive trees in a given VW severity class. 71.4%, 75.0%, 78.3% and 

76.3% of the initial, low, moderate and severe VW affected trees were correctly classified, respectively 
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(Table 5). Interestingly, all symptomatic trees were correctly classified and 55.5% of the asymptomatic 

plants that were considered symptomatic in the analysis were classified as plants with initial 

symptoms, the lowest severity class. Overall, the classification accuracy of the model was 59.0% 

(Table 5) and the κ value 0.487 (95% confident interval 0.437−0.536). The degree to which the five 

VW severity categories are separated is measured by the Mahalanobis distance between centroid 

values for each VW severity category (Table 6). As expected, all pairwise distances between the five 

VW severity categories were statistically significant (p < 0.005). 

Table 5. Confusion matrix for Verticillium wilt severity classes using the linear 

discriminant classification based on the indices selected by the forward stepwise 

discriminant analysis. 

Prediction 
Ground Truth Class 

Precision Asymptomatic Initial Low Moderate Severe 

Asymptomatic 263 0 0 0 0 100% 
Initial 137 70 5 1 1 32.7% 
Low 48 15 48 2 4 41.0% 

Moderate 37 6 6 36 4 40.5% 
Severe 25 7 5 7 29 76.3% 

Class recall 51.6% 71.4% 75.0% 78.3% 76.3% 59.0% 

Table 6. Squared Mahalanobis distances for Verticillium wilt severity classes obtained in a 

forward stepwise discriminant analysis. 

 Squared Mahalanobis distance 

VW severity class Asymptomatic Initial Low Moderate Severe 

Asymptomatic - 3.102 7.032 9.704 18.410 
Initial 3.102 - 2.385 5.545 11.067 
Low 7.032 2.385 - 3.614 8.761 

Moderate 9.704 5.545 3.614 - 5.569 
Severe 18.410 11.067 8.761 5.569 - 

 F values 

VW severity class Asymptomatic Initial Low Moderate Severe 

Asymptomatic - 3.102 *** 7.032 *** 9.704 *** 18.410 *** 
Initial 3.102 *** - 2.385 ** 5.545 *** 11.067 *** 
Low 7.032 *** 2.385 ** - 3.614 *** 8.761 *** 

Moderate 9.704 *** 5.545 *** 3.614 *** - 5.570 *** 
Severe 18.410 *** 11.067 *** 8.761 *** 5.570 *** - 

Notes: ** P < 0.0005; *** P < 0.0001. 

Tc-Ta and vegetation indices, that were part of the discriminant model shown in Table 4, were used 

in a canonical discriminant analysis. In this analysis, three canonical functions (variates) showing 

significant differences (p < 0.0001) among VW severity classes were created. The first canonical 

variate significantly accounted for 42.3% of the variation while the second and the third ones only 

accounted for 13.8 and 9.5% of the variation, respectively. The structural indices (i.e., OSAVI, RDVI, 

MTVI1 and MSR) dominated the three variates. In addition, the first canonical variate was also 
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dominated by positive loadings from Tc-Ta, TCARI, GM1, PSSRb, PRI570, R515/R570 and HI and 

negative loadings from FLD3. In the second canonical variate positive loadings from PSSRb, VOG, 

TCARI/OSAVI, BGI1, LIC3 and R515/R670 were found. The third canonical variate was dominated by 

positive loadings from PSSRc and negative loadings from GM1, PSSRb and R (Table 7). According to 

canonical loadings, the asymptomatic trees were detected mainly at low Tc-Ta, GM1, PSSRb, PRI570, 

R515/R570 and HI, and high structural indices and FLD3 values. As the VW severity increased,  

the values of Tc-Ta, TCARI, GM1, PSSRb, PRI570, R515/R570 and HI were higher, and structural 

indices and FLD3 were lower. Furthermore, the ranges of the indices values became higher as the VW 

severity level increased. In contrast, blue/green/red indices (BGI1, R and LIC3), chlorophyll 

(TCARI/OSAVI and VOG) and carotenoid indices (R515/R670 and PSSRc) were not able to detect 

differences among asymptomatic, initial and low severity levels but could discriminate among 

asymptomatic, moderate and severe levels (Figure 5). 

Table 7. Standardized canonical coefficients (SCCs) and correlation coefficients (CCCs) 

of discriminant canonical functions of canopy normalized canopy temperature (Tc-Ta) and 

vegetation indices selected by the forward stepwise discriminant analysis that determine 

Verticillium wilt severity levels. 

Source 
SCCs  CCCs 

Variate 1 Variate 2 Variate 3  Variate 1 Variate 2 Variate 3 

OSAVI −5.773 23.593 −14.241  −0.614 −0.050 0.270 
LIC3 −0.262 0.775 0.206  −0.585 −0.090 −0.297 
Tc-Ta 0.384 0.214 0.118  0.471 0.032 0.089 
GM1 3.326 −0.100 −6.922  −0.565 −0.143 0.164 

R515/R570 1.282 −0.022 0.009  0.339 −0.059 −0.001 
PRI570 1.149 1.137 0.035  0.342 0.080 0.142 

R 1.083 0.760 −2.353  0.324 0.187 0.166 
TCARI/OSAVI −0.736 1.567 −0.348  −0.274 0.360 0.119 

EVI −3.119 −9.210 −2.857  −0.584 −0.072 0.256 
TCARI 2.036 −1.356 1.153  −0.459 0.163 0.142 
MTVI1 −6.244 9.113 −14.574  −0.559 −0.016 0.285 
R515/R670 −0.961 2.189 1.139  −0.327 −0.009 −0.100 

NDVI −1.867 −3.687 1.187  −0.618 −0.054 0.196 
BGI1 0.230 0.824 0.470  −0.054 −0.010 −0.150 

PSSRc −1.626 0.499 7.490  −0.396 −0.126 0.260 
TVI −1.418 1.260 5.868  −0.527 0.044 0.319 
MSR −6.167 −9.539 0.776  −0.530 −0.111 0.130 

HI 3.354 −1.410 1.030  −0.471 −0.024 −0.146 
FLD3 −0.340 −0.271 0.262  −0.379 −0.156 0.137 
VOG −1.017 1.486 −0.067  −0.598 −0.084 0.143 

PSSRb 4.601 6.268 −2.450  −0.496 −0.145 0.116 
RDVI 15.945 −18.906 24.147  −0.592 −0.049 0.317 

  



Remote Sens. 2015, 7 5598 

 

 

Figure 5. Classification of 756 olive trees assessed in Ecija into five Verticillium wilt 

severity classes based on (a) the first and second canonical variates and (b) the first and 

third canonical variates, from the canonical discriminant analysis. 

a 

b 
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SVM classification was also conducted for the differentiation among VW severity classes using the 

vegetation indices selected in the forward stepwise discriminant analysis showed in Table 4. Table 8 

summarizes the results of the SVM model, which classified every olive tree assessed at field level in a 

given VW severity class. The overall classification accuracy was 79.2% and the κ value 0.495 (95% 

confident interval 0.433–0.557), that was slightly higher than that obtained by LDA. 99.4% of 

asymptomatic trees were correctly classified in the asymptomatic class and the 14.3%, 40.6%, 67.4% 

and 55.3% of the initial, low, moderate and high severity infected VW trees were correctly classified, 

respectively. In contrast to LDA results, SVM was very effective in correctly identifying asymptomatic 

trees but showed lower power to identify symptomatic trees. Mostly, this classification method failed 

in separating between plants infected at early stages of VW development. Thus, 63.2% and 56.3% of 

trees showing initial or low VW severity were considered as asymptomatic (Table 8). The maps 

generated in Figure 6 represent the spatial pattern of VW severity classes assessed at field level and the 

severity classes predicted by LDA and SVM. Such maps showed an overestimation of VW 

symptomatic classes by LDA while SVM revealed an underestimation of these classes. 

Table 8. Confusion matrix for Verticillium wilt severity classes using the support  

vector machine classification based on the indices selected by the forward stepwise 

discriminant analysis. 

Prediction 
Ground Truth Class 

Precision Asymptomatic Initial Low Moderate Severe 

Asymptomatic 507 79 36 15 11 78.2% 
Initial 0 14 1 0 0 93.3% 
Low 3 3 26 0 3 74.3% 

Moderate 0 2 1 31 3 83.8% 
Severe 0 0 0 0 21 100% 

Class recall 99.4% 14.3% 40.6% 67.4% 55.3% 79.2% 

When analysing the different plots separately, the LDA model reached classification accuracies 

between 60.0% and 82.9% and κ ranged from 0.382 to 0.808 (Table 9). On the other hand, SVM 

model showed better classification accuracies between 68.5% and 92.7% and slightly lower κ ranging 

from 0.230 to 0.798. Applying the forward stepwise discriminant analysis to each plot separately, the 

indices which contributed most to discriminate among VW severity classes for the global model were 

selected in the majority of plots. Interestingly, Tc-Ta was selected in all plots, R in seven plots and 

TCARI/OSAVI in six plots. In addition, structural indices were selected in no more than three plots in 

contrast to the high discrimination power showed in the global model (Table 10). 
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Figure 6. Spatial distribution of Verticillium wilt severity classes assessed at field level  

(a,b,c) and the severity classes predicted by the linear discriminant analysis (LDA)  

(d,e,f) and support vector machine (SVM) methods (g,h,i) in three different plots. 
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Table 9. Overall accuracy and kappa obtained from the linear discriminant analysis (LDA) 

and the support vector machine (SVM) classification methods to detect Verticillium wilt 

severity levels for the individual olive plots assessed and for the all the plots together. 

Plot 
LDA  SVM 

Overall accuracy Kappa  Overall accuracy Kappa 

1 0.600 0.486  0.862 0.712 
2 0.796 0.761  0.880 0.788 
3 0.684 0.543  0.785 0.230 
4 0.753 0.766  0.685 0.538 
5 0.600 0.382  0.825 0.250 
6 0.732 0.593  0.902 0.787 
7 0.600 0.523  0.911 0.785 
8 0.829 0.808  0.927 0.798 
9 0.613 0.415  0.793 0.555 

All plots 0.590 0.487  0.792 0.495 

Table 10. Variables selected in the forward stepwise discriminant analysis to distinguish 

among Verticillium wilt severity levels for each individual plot assessed. 

Source 
Plot 

1 2 3 4 5 6 7 8 9 

OSAVI  X  X      
LIC3 X X    X  X X 
Tc-Ta X X X X X X X X X 
GM1  X X   X   X 

R515/R570  X  X  X X X  
PRI570    X      

R  X  X X X X X X 
TCARI/OSAVI X X X X  X  X  

EVI X X   X     
TCARI    X    X X 
MTVI1          
R515/R670    X      

NDVI  X X     X  
BGI1  X X       

PSSRc   X X      
TVI  X  X      
MSR          

HI   X X    X  
FLD3  X  X   X X X 
VOG  X    X    

PSSRb  X  X      
RDVI  X        
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4. Discussion 

Remote sensing has been demonstrated to be a useful decision support system for crop  

management [9,10]. In combination with powerful data analysis methods, remote sensing becomes an 

essential tool for integrated disease management. In particular, the detection of olive trees infected by 

V. dahliae would be of importance for the management of VW, particularly at early stages of  

V. dahliae infection. The early detection of V. dahliae infection would help to avoid the spread of  

the pathogen to new areas, especially if they are free of V. dahliae, and to improve the use of  

available control measures [2,6,61]. A recent study has demonstrated early detection of VW using  

high-resolution thermal and hyperspectral imagery in two commercial olive orchards [12]. V. dahliae 

penetrates into the plant roots, blocking water flow and reducing the transpiration rate which induced 

the stomata closure. Consequently, evaporative cooling is reduced and canopy temperature increases. 

Moreover, the reduction in photosynthesis caused by V. dahliae infection leads to an increase of the 

dissipation of energy by fluorescence. Considering these changes, several studies showed the 

feasibility of VW detection of olive trees at leaf and local scale even before characteristic disease 

symptoms were visible using normalized temperature, chlorophyll content, chlorophyll fluorescence 

and blue B/BG/BR indices [12,13]. However, to our knowledge no studies have explored the 

robustness of these methods using narrow-band indices and thermal imagery for the early detection of 

VW in larger olive growing areas (i.e., thousands of hectares) characterized by large differences in 

crop age, tree-crown size, olive cultivars, crop managements and classes of disease severity. Therefore, 

the main objective of this study was to develop a robust and accurate method to detect the stress 

caused by V. dahliae infection and severity in olive growing areas to design localized VW control 

strategies at large scale. 

In our study, thermal and hyperspectral imagery were obtained from the study area, obtaining the 

data for each individual tree of normalized canopy temperature (Tc-Ta) and 260 spectral bands. As the 

number of spectral bands increases, the analysis of the data becomes more limited and complex so a 

dimensional reduction is required without losing important information [62]. Thus, the calculation of 

vegetation indices results in a reduction of the data dimension, which may be also useful in effective 

data analysis for disease discrimination [9]. Since vegetation indices commonly used in remote sensing 

of vegetation are disease-specific indices, in this study we used the indices that Calderón et al. [12] 

proved to be good indicators of VW at early and advanced stages of disease development. Then, these 

indices were introduced in a forward stepwise discriminant analysis to select the ones contributing the 

most to the discriminatory power among VW severity classes, so that the spectral dimensionality was 

further reduced. Results of this work demonstrates that Tc-Ta, structural (OSAVI, MTVI1, NDVI, 

TVI, MSR and RDVI), chlorophyll (GM1, TCARI/OSAVI, TCARI, VOG and PSSRb), carotenoid 

(PSSRc), blue/green BGI1, blue/red LIC3, FLD3 and HI indices were robust VW indicators in 

agreement with Calderón et al. [12]. However, chlorophyll indices (ZM [63], GM2 [42], PSSRa [43], 

mCAI [64]), SIPI [65], PRI515 [66], blue (B) [12] and the blue/red ratios BR1 and BR2 [27] were not 

good indicators in the present study, demonstrating to be influenced by the variation of agronomic 

characteristics within large olive areas. By contrast, indices that were not robust in Calderon et al. [12], 

such as PRI570, red (R), R515/R570, R515/R670, were demonstrated to be useful for VW detection in this 

study. At large scale, these indices may work better detecting VW at advanced stages where crown 
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structural and density changes due to disease stress are more differentiated as the variation in 

agronomic characteristics within the study area is bigger. When applying the forward stepwise 

discriminant analysis to individual plots, the indices selected in the analysis including all plots 

demonstrated their robustness for each plot analyzed separately, with the exception of structural 

indices. The non-inclusion of structural indices by the stepwise discriminant analysis may be due to the 

lower within plot variability on crown structure and density according to the presence of fewer 

differences in agronomic characteristics.  

In remote sensing for plant disease detection, different classification methods have been used in 

order to maximize information obtained from imagery. In this study, two different supervised 

classification methods were used for data analysis, the LDA and the non-linear SVM methods.  

Both classification methods have shown good results for detecting plant diseases at small  

scale [14,21,67,68] but to our knowledge have not been used previously for the detection of plant 

diseases at large scale, such as the one of this study. For the whole dataset, LDA reached an overall 

accuracy of 59.0% and a κ of 0.487 while SVM showed a higher overall accuracy, 79.2%, and a 

slightly higher κ, 0.495. LDA correctly classified the 51.6% of the asymptomatic trees while SVM 

classified 99.4%. However, LDA was more efficient in classifying the trees at initial and low VW 

severity levels, reaching accuracies of 71.4% and 75.0%, respectively, in comparison with the 14.3% 

and 40.6% obtained by SVM. Both classification methods showed an increase of the class accuracy 

(class recall) as the VW severity level increased. It is due to the higher differences found in Tc-Ta and 

vegetation indices values with the increase in VW severity level when is compared to the 

asymptomatic class [12]. When considering individual olive orchards, the overall classification 

accuracy reached by both classification methods were generally higher than that attained with the 

whole dataset. The lower within plot variability on agronomic characteristics could be responsible for 

this effect. In addition, SVM obtained higher overall accuracies and κ than LDA. 

Recently, there has been growing interest in exploring the potential of SVM for early detection of 

plant diseases. Thus, Rumpf et al. [21] used this approach to discriminate between healthy sugar beet 

leaves from that infected with various foliar pathogens that included Cercospora beticola, Uromyces 

beate and Erysiphe betae at early stages of pathogenesis based on hyperspectral data. Similarly,  

Römer et al. [68] detected wheat leaf rust at a pre-symptomatic stage using UV-light induced 

fluorescence data analysed by SVM classification methods. Nevertheless, in our study, although SVM 

reached the highest overall accuracy, LDA classified olive trees better at the initial and low VW 

severity levels with accuracies of 71.4% and 75.0%, respectively, in comparison with the 14.3% and 

40.6% obtained by SVM. After LDA, a canonical discriminant analysis was conducted to reduce the 

dimensionality of the variables included in the model. Thus, three canonical variates were derived 

accounting for 42.3%, 13.8% and 9.5% of the variation, respectively. The first canonical variate 

allowed the discrimination between the asymptomatic and symptomatic VW severity classes, 

particularly at the initial and low levels. This variate was dominated by Tc-Ta, structural indices 

(RDVI, MTVI1, MSR, OSAVI and EVI), PRI570, FLD3, HI, chlorophyll (TCARI, GM1, PSSRb) and 

carotenoid (R515/R570) indices, whose value ranges increased as the severity level increased. The 

second and third canonical variates were able to distinguish between asymptomatic and VW severity 

levels at advanced stages of disease development. These variates were dominated by the blue/green/red 
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(BGI1, R and LIC3), structural (OSAVI, RDVI, NDVI, EVI, TVI, RDVI, MTVI1 and MSR), 

chlorophyll (TCARI/OSAVI, PSSRb, GM1 and VOG) and carotenoid indices (R515/R670 and PSSRc). 

Canopy temperature has proven to be useful to detect root impairment caused by V. dahliae in 

several studies. Nilsson [69] reported that oilseed rape plants infected with V. dahliae showed leaf 

temperatures 5–8 °C higher than non-infected plants. In addition, normalized leaf and canopy 

temperature were identified as early indicators of V. dahliae infection in olive trees [12,13], showing 

up to 2 °C higher in VW infected trees. Hyperspectral reflectance differences were also demonstrated 

to identify VW in cotton and olive crops. Chen et al. [70,71] confirmed that the spectral characteristics 

of cotton infected plants changed gradually with the increase in the visible region with disease 

severity, while a reduction occurred in the near-infrared region. Moreover, results obtained in this 

study at canopy level confirmed those obtained at leaf level under controlled conditions by  

Calderón et al. [13], who identified SPAD readings (chlorophyll content) and chlorophyll fluorescence 

as early VW indicators. In addition, these results were also in agreement with the study carried out by 

Calderón et al. [12] at canopy level in two olive commercial orchards, proving the potential for early 

detection of V. dahliae infection in olive crops using hyperspectral imagery acquired with an 

unmanned aerial vehicle. In that study, FLD3, B, BGI1 and BRI1 were determined as VW indicators at 

initial stages of disease development. Moreover, Calderón et al. [12] proved structural, chlorophyll, 

carotenoid and HI indices to be good VW indicators at advanced stages of disease development.  

In conclusion, Tc-Ta calculated from thermal imagery and chlorophyll fluorescence estimated with the 

FLD3 in-filling retrieval method from the hyperspectral imagery allowed identifying olive trees at the 

early stages of disease development as much at orchard scale as at larger scale. Thus, the use of Tc-Ta 

and FLD3 as early indicators of Verticillium wilt is not influenced by the variation of agronomic 

characteristics within the study area. However, it is not the case for blue/blue-green/blue-red (B, BG1 

and BR1) ratios which were found good indicators of Verticillium wilt at initial and low severity levels 

at orchard scale but only detected moderate and advanced severity levels at larger scale. Structural, 

xanthophyll, chlorophyll, carotenoid and disease indices and green/red ratios calculated from 

hyperspectral imagery proved to be good indicators to detect the presence of moderate to severe 

damage caused by Verticillium wilt as much at orchard scale as at larger scale. 

5. Conclusions 

In the present study, a procedure to develop a robust and accurate method for the automatic 

classification of V. dahliae infection and severity using remote sensing was assessed at large scale. 

This study completed the one conducted by Calderón et al. [12] at orchard scale, extrapolating the 

methods to larger areas comprising several olive orchards differing in soil and crop management 

characteristics. High-resolution imagery was acquired with a thermal and a hyperspectral camera 

installed on board a manned platform which flew a 3000-ha commercial olive area. We calculated 

narrowband hyperspectral indices and normalized canopy temperature (Tc-Ta) from the hyperspectral 

and thermal imagery and used linear discriminant analysis (LDA) and support vector machine (SVM) 

methods to discriminate among VW severity classes exploiting the combined information of these 

indices and Tc-Ta. For the whole dataset, LDA reached an overall accuracy of 59.0% and a κ of 0.487 

while SVM obtained a higher overall accuracy, 79.2%, and a similar κ, 0.495. However, LDA 
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classified better the trees at initial and low severity levels, reaching accuracies of 71.4% and 75.0%, 

respectively, in comparison with the 14.3% and 40.6% obtained by SVM. Tc-Ta, structural indices 

(RDVI, MTVI1, MSR, OSAVI and EVI), PRI570, FLD3, HI, chlorophyll (TCARI, GM1, PSSRb) and 

carotenoid (R515/R570) indices detected VW at early and advanced stages of disease development, while 

the structural (NDVI and TVI), blue/green/red (BGI1, R and LIC3), chlorophyll (TCARI/OSAVI and 

VOG) and carotenoid indices (R515/R670 and PSSRc) were good indicators of VW at advanced stages. 

Comparing with the results obtained by Calderón et al. [12], Tc-Ta and FLD3 allowed identifying 

olive trees at the early stages of disease development as much at orchard scale as at larger scale, being 

not influenced by the variation of agronomic characteristics within the study area. Structural, 

xanthophyll, chlorophyll, carotenoid and disease indices and blue/green/red ratios proved to be good 

indicators to detect the presence of moderate to severe damage caused by VW. These results 

demonstrate that the methods developed at orchard scale are validated for flights in large areas 

consisting of olive orchards with different characteristics. 
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