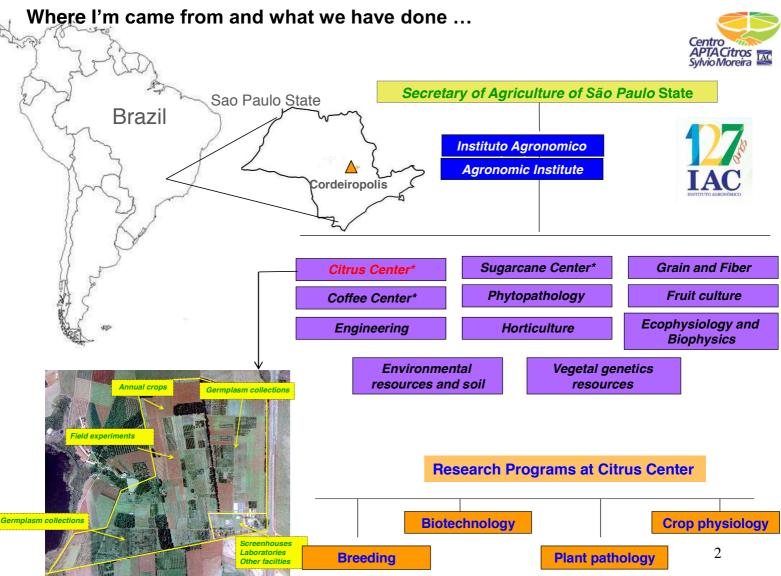


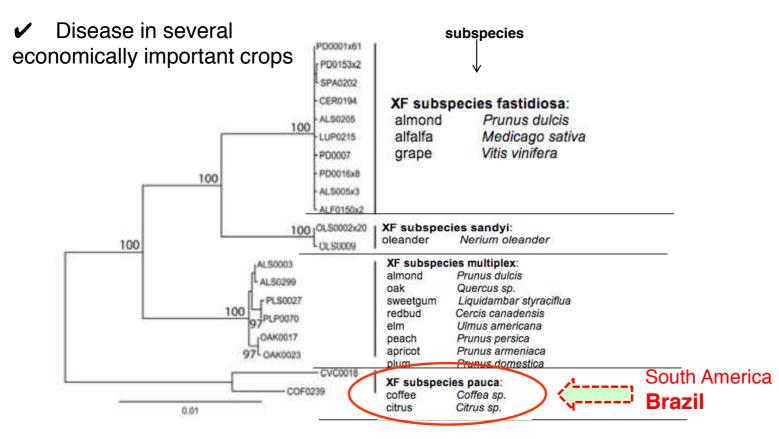
# Diseases induced by *X. fastidiosa* subsp. *pauca*: ecology, epidemiology and management


Helvécio Della Coletta Filho

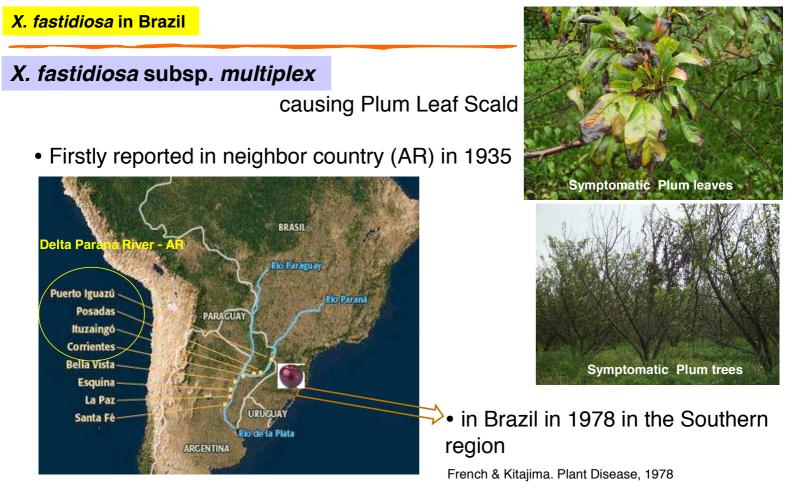
Citrus Research Center / Agronomic Institute / São Paulo State / Brazil

helvecio@centrodecitricultura.br









Area = 199 ha



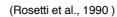
# ✓ Infection a hundred of plants species

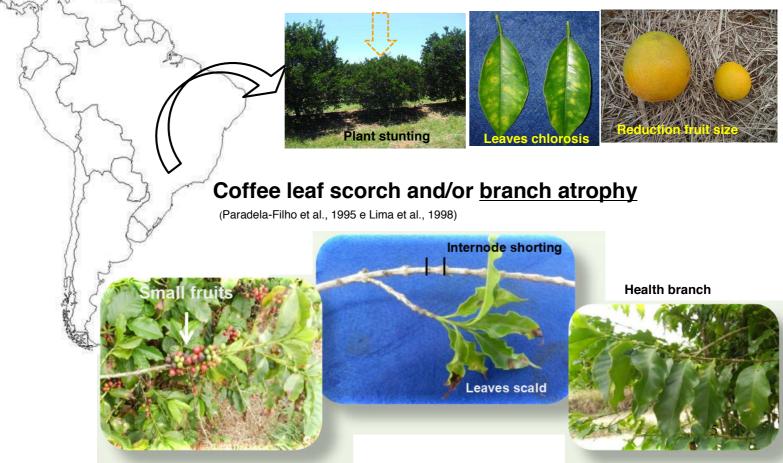


Maximum likelihood phylogenetic tree of *Xylella fastidiosa* Yuan et al., 2010 Phytopathology 100:601-611.



Nowadays is spread for all regions that produced plum (*Prunus domestica*)

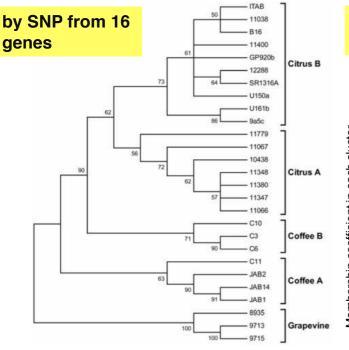



São Paulo, Paraná, Minas Gerais, Sta Catarina, and Rio Grande Sul 4



# **Citrus Variegated Chlorosis - CVC**








from sweet orange from coffee

# **Genetically different !**



Genetic relationship of *X. fastidiosa* by MEGA using isolates from ad hoc collection. (Wickert et al., 2003 – Phytopathology)

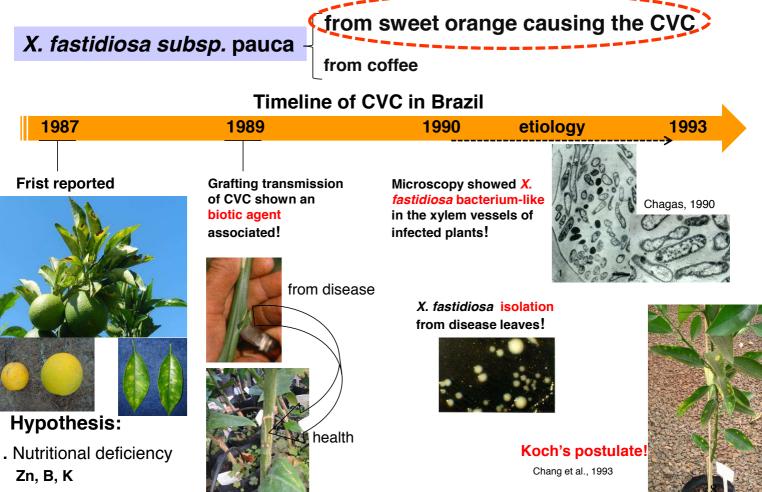
#### by Microsatellites markers from 12 loci XF from coffee 0.80 0.60 Membership coefficient in each cluster 10.40 0.00 0.00 1 5 5 7 7 9 11 13 15 17 19 11 19 25 25 27 29 11 23 25 27 39 44 45 44 47 48 2 4 6 8 10 11 14 15 18 23 21 29 25 28 19 32 39 35 39 39 40 40 44 49 48 1.90 0.80 XF from sweet orange 0.60 0.40 0.2 51 51 52 55 57 52 54 56 58 67 67 11 12 13 77 79 81 83 66 68 71 72 74 76 71 10 82 84 61 63 52 64 93 92 97 92 94 96 98 10 from cofee 0.80 0.60 9.4 from sweet orange 10 103 107 109 111 113 100 104 108 108 111 112 114

Genetic relationship of *X. fastidiosa* by STRUCTURE using isolates from sweet orange and coffee plants closely sampled .

(Francisco, 2014– submitted)



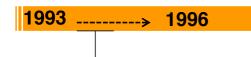
from sweet orange from coffee


# **Biologically different !**

Patterns of sweet orange and coffee plants infection and colonization buy *X. fastidiosa* subesp. *pauca* isolates from:

|         |                      | Ratio for infection and symptoms in: |                              |                       |                 |  |
|---------|----------------------|--------------------------------------|------------------------------|-----------------------|-----------------|--|
| XF from | Isolate              | Citrus host                          |                              | Coffee host           |                 |  |
| $\sim$  |                      | Infection                            | CVC<br>symptoms <sup>e</sup> | Infection/            | CLS<br>symptoms |  |
| Citrus  | 25.07                | 1157 (H156 (H157 -                   | 1/22                         | STRATEGO              | an season o     |  |
| 1       | 10                   | 1/2 (6.1)                            | 1/2                          | 0/20                  | 0/20            |  |
| 1       | 11<br>35<br>36<br>37 | $4/13(5.7 \pm 0.5)$                  | 0/13                         | 0/20                  | 0/20            |  |
| 1       | 35                   | $9/11(6.3 \pm 0.1)$                  | 1/11                         | 0/20                  | 0/20            |  |
| 1       | 36                   | $9/19(4.9 \pm 0.3)$                  | 1/19                         | 0/20                  | 0/20            |  |
| 1       | 37                   | $8/15(5.4 \pm 0.3)$                  | 3/15                         | 0/20                  | 0/20            |  |
| 1       | 6570                 | $8/11(5.4 \pm 0.3)$                  | 1/11                         | 0/20                  | 0/20            |  |
| 2       | 18                   | $3/6~(6.1\pm0.4)$                    | 3/6                          | 0/20                  | 0/20            |  |
| Coffee  | 29                   | 0/14                                 | 0/14                         | 7/20 (4.9 ± 0.2)      | 0/20            |  |
| 1       | 1                    | 0/13                                 | 0/13                         | $18/20 (5.2 \pm 0.1)$ | 0/20            |  |
| 4       | 4                    | 0/16                                 | 0/16                         | $12/20(5.1 \pm 0.1)$  | 0/20            |  |
| 4       | 3124                 | 0/16                                 | 0/16                         | $6/20 (4.8 \pm 0.2)$  | 0/20            |  |
| 5       | 32                   | 0/13                                 | 0/13                         | $11/20(5.4 \pm 0.2)$  | 0/20            |  |
| 7       | 8                    | 0/15                                 | 0/15                         | $16/20(4.9\pm0.1)$    | 0/20            |  |
| 7       | 24                   | 0/8                                  | 0/8                          | $14/20(4.7 \pm 0.2)$  | 0/20            |  |
| 7       | 24<br>33             | 0/7                                  | 0/7                          | $11/20(5.4 \pm 0.1)$  | 0/20            |  |

Adapted from Almeida et al., 2008 - AEM






. Virus disease



## Timeline of CVC in Brazil and actions



**CVC** spread information

# ✓ Vector

transmission

Species of Sharpshooters

Lopes et al., 1996.

### ✔ Diagnosis

Previous to disease symptoms expression.

Pooler & Hartung, 1995

#### Survey and Epidemiology

How far the disease was spread from the first reported spot.

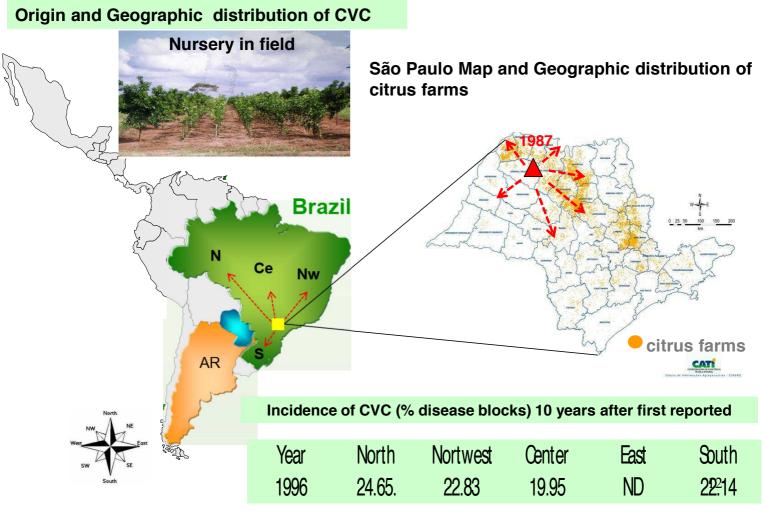
The importance of inoculum source from outside and from inside the orchards.

Laranjeira, 1993 <sup>9</sup>





# Timeline of CVC in Brazil and actions


| 1993>                                           | 1996>2003                                                                                                    |                                                                             |    |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----|
|                                                 |                                                                                                              | Can (Sec)                                                                   |    |
| CVC spread information                          | Certify program for<br>citrus propagative                                                                    |                                                                             |    |
| ✓ Vector<br>transmission                        | material production                                                                                          | -                                                                           |    |
| ✓ Diagnosis                                     | <ul> <li>Selection of XF f<br/>mother plants and<br/>protection in vector<br/>proof screen house.</li> </ul> | fre                                                                         |    |
| <ul> <li>Survey and<br/>Epidemiology</li> </ul> | Mother plants,<br>budwood production<br>and nursery plants a<br>in vector-proof scree<br>house.              | Ú.                                                                          |    |
|                                                 | law "All n<br>productio                                                                                      | e 2003: Mandatory<br>nursery plant<br>on steps must be<br>ctor-proof screen | 10 |



# Timeline of CVC in Brazil and actions

| Timeline of CVC in Brazil and actions |                                                                   |                                                                    |  |
|---------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--|
| 1993> <b>19</b> 9                     | <mark>6</mark> >2003                                              | Today                                                              |  |
|                                       |                                                                   |                                                                    |  |
| CVC spread                            | Certified citrus                                                  | Management Strategies                                              |  |
| information                           | propagative material program                                      | Short-to medium term effect                                        |  |
| ✓ Vector<br>transmission              | Selection of XF free<br>mother plants and<br>protection in vector | <ul><li>Health nursery plants</li><li>Inoculum reduction</li></ul> |  |
| Diagnosis                             | proof screen house                                                | Minimizing vector<br>population                                    |  |
| Survey and                            | Budwood<br>production and nursery                                 | Long-term effect                                                   |  |
| Epidemiology                          | plants in vector-proof<br>screen house                            | <ul> <li>Genetic resistance</li> </ul>                             |  |
|                                       |                                                                   | - source of resistance:                                            |  |
|                                       | Since 2003:<br>Mandatory law "Nursery<br>plant production under   | <ul><li>inbreeding program</li><li>OMG - cisgeny</li></ul>         |  |
|                                       | screen house !"                                                   | mass selection                                                     |  |





#### Plant hosts and economic damage

Hosts:





- all commercial <u>sweet orange</u> (C sinensis) varieties are susceptible
- Most of mandarins (C reticulata) varieties are resistant, but with some few exception (Carvalhais and Wilking).
- Most of tangors (C. sinensis x C. reticulata) are resistant, but with some few exception (Ortanique, Temple, Umatilla)
- All lemons, acid lime, and pummelos tested until now are resistant.

Alternative hosts: Nicotiana tabacum and Cataranthus roseus





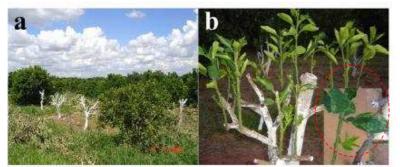




#### Plant hosts and economic damage

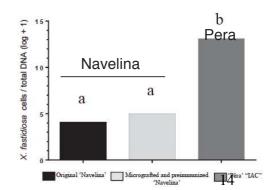
Hosts:

 all commercial <u>sweet orange</u> varieties are susceptible, but with some exceptions.




#### Navelina ISA 315: A cultivar resistant to citrus variegated chlorosis




André Luiz Fadel <sup>a, \*</sup>, Eduardo Sanches Stuchi <sup>b</sup>, Sérgio Alves de Carvalho <sup>c</sup>, Maria Teresa Federici <sup>d</sup>, Helvecio Della Coletta-Filho <sup>c</sup>

# Disease plants in field Top grafting of Navelina on disease plant



Susceptible Pera variety

#### X. fastidiosa in tested plants



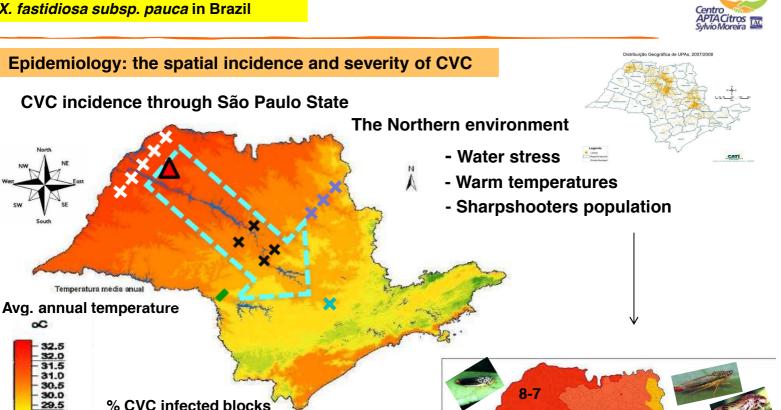


## Plant hosts and economic damage








Reduction (%) on fruit production and juice quality on CVC disease plants compared to no-disease

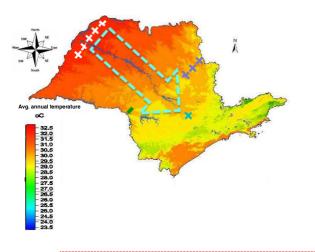
| Symptoms level | Fruit production |        | Juice quality |       |
|----------------|------------------|--------|---------------|-------|
|                | Weight           | Number | SS∗           | Ratio |
| middle         | 16.5             | 13.9   | -14%          | -22%  |
| strong         | 75               | 70.9   |               |       |

adapted from Laranjeira, 2004

\*SS - total Soluble Solid - OBrix

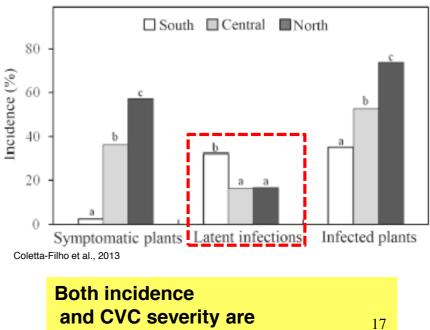
oC



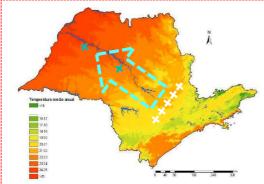

|      | Center | North | Northwest | West | East  | South |
|------|--------|-------|-----------|------|-------|-------|
| 2009 | 52.65  | 52.52 | 46.71     | 1.15 | 28.23 | 1.57  |
| 2010 | 38.2   | 53.03 | ·`2.81    | 4.41 | 34.86 | 3.04  |
| 2011 | 42.37  | 59.73 | 52.55     | 1.06 | 45.15 | 2.05  |
| 2012 | 42.16  | 58.35 | 47.19     | 0    | 40.78 | 3.77  |

| 8-7                                 | - man S |        |
|-------------------------------------|---------|--------|
| 1                                   | 6-7     |        |
| Number of                           |         | - man  |
| generation/year                     |         | -      |
| 2   3                               | 4-5     | an the |
| 3   4                               | Y Vat   |        |
| 5 6                                 | Comment |        |
| 6 7                                 |         | w-Ô-e  |
| 7    8                              |         | Ŷ      |
| Fonte: Eselq/USP: Epagr/Ciram, 2005 |         |        |

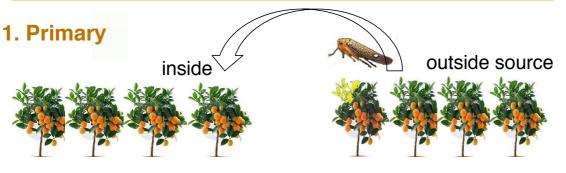
### **Epidemiology: the latent infection**

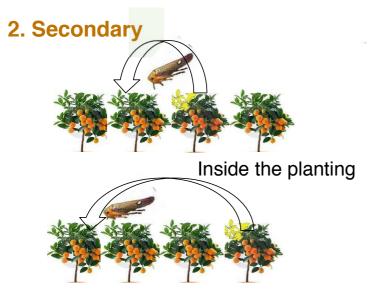

APTA Citros Sylvio Moreira IAO

CVC incidence through São Paulo State




#### X. fastidiosa - the latent infection is higher in South region


Journal of Plant Pathology (2013), 95 (3), 493-498




and CVC severity are environmentally dependent!







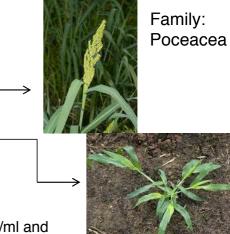


Differently to PD pathosystem, for CVC limited information is available about others sources of inoculum outside sweet orange and its importance to disease epidemiology.



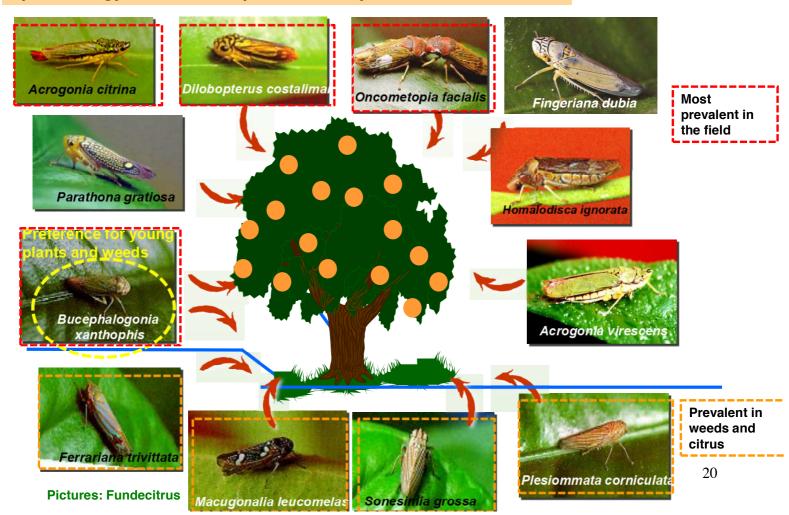
# Weeds plants present in orchards

Frequency of infection of weeds plants mechanically inoculated with the CVC strain of Xylella fastidiosa.


|                             |                   | CVC strain |          |
|-----------------------------|-------------------|------------|----------|
| Scientific name             | 1st exp.          | 2nd exp.   | 3rd exp. |
| Medicago sativa             | *                 | 1/10       | 5/10     |
| Echinochloa crus-galli      | 8/10 <sup>b</sup> | 6/10       | 7/10     |
| Brachiaria decumbens        | 2/9               | 3/10       | 8/10     |
| Digitaria horizontalis      | 3/10              | 1/10       | 0/10     |
| Brachiaria plantaginea      | 3/9               | 9/10       | 9/10     |
| Solanum americanum          | 2/9               | 4/10       | 3/10     |
| Bidens pilosa               | 4/10              | 1/10       | 0/10     |
| Citrus sinensis cv. Caipira | 10/10             | 2/6        |          |

Plants were injected twice with suspensions containing 10<sup>8</sup> to 10<sup>9</sup> CFU of XF/ml and evaluated by PCR 60 DAI

Adapted from: Lopes et al. 2003. Plant Disease 87:544


No acquisition and/or transmission assays were done.





#### Epidemiology: <u>13 different species of sharpshooters as vectors</u>







## **Epidemiology: vectors**

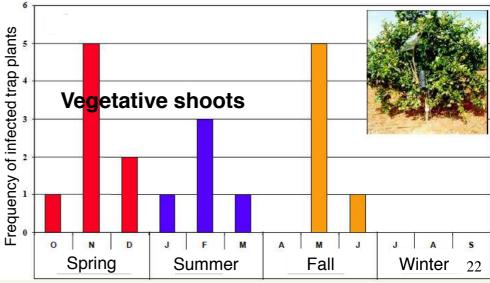
# Transmission efficiency is low and different among the species

| Acrogonia citrina                         | limai<br>Oncometopia facialis | Fingeriana dubia        |  |
|-------------------------------------------|-------------------------------|-------------------------|--|
| Parathona gratiosa                        |                               | Homalodisca ignorata    |  |
| Bucephalogonia<br>xanthophis              |                               | Acrogonia Virescens     |  |
| Ferrariane trivittata<br>Macugonalia leuc | omelas Sonesinia grossa       | Piesiommata corniculata |  |

**Pictures: Fundecitrus** 

| Sharpshooter   | _<br>Transmission       |
|----------------|-------------------------|
| sps            | efficiency <sup> </sup> |
| Macugolania    | 17.30%                  |
| Bucephalogonia | 12.80%                  |
| Dilobppterus   | 5.50%                   |
| Plesiommata    | 2.90%                   |
| Parathona      | 2.80%                   |
| Acrogonia      | 2.30%                   |
| Ferrariana     | 1.90%                   |
| Oncometopia    | 1.30%                   |
| Sonesimia      | 1.20%                   |
| Homalodisca    | 0.50%                   |
| A. virensis    | 0.30%                   |
|                | 21                      |

Adapted from: P Yamamoto


### Epidemiology: natural infectivity of vectors and transmission





# Successful transmission is higher in the wet and warm seasons.

Frequency of trap plants naturally infected by XF. Avg of three orchards.



Adapted from: JRS Lopes





## Epidemiology: faunistic distribution of sharpshooters

# Different sites of the citrus block host different populations of sharpshooters.

| Site            | Total collected | No. of species | No. of collections | Shannon-Wiener Diversity (H') |
|-----------------|-----------------|----------------|--------------------|-------------------------------|
| Forest edge     | 1012            | 14             | 58                 | 1.39                          |
| Stand periphery | 1003            | 17             | 58                 | 1.30                          |
| Stand interior  | 846             | 13             | 56                 | 1.45                          |

Adapted from: Coelho et al, 2008

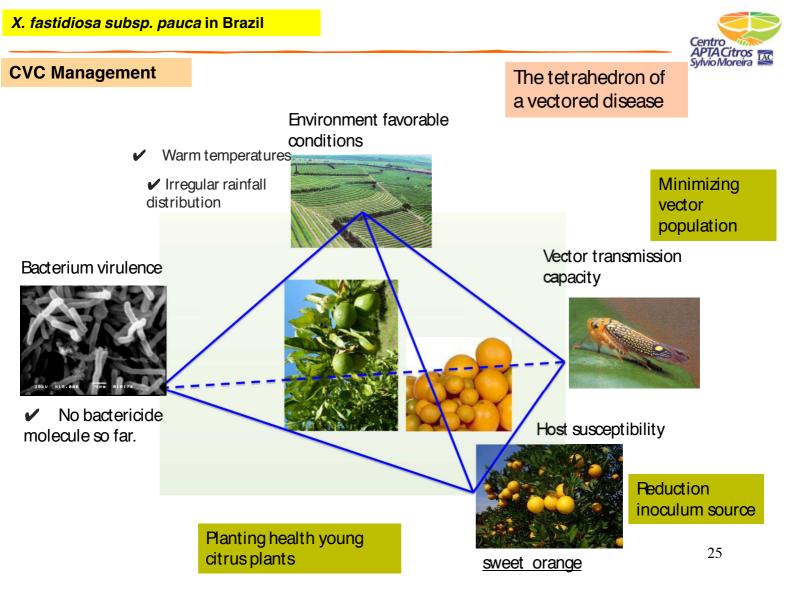
#### **Epidemiology: seeds transmission**

## • There is NO transmission of XF from seeds to seedlings

Seven years of negative detection results confirm that *Xylella fastidiosa*, the causal agent of CVC, is not transmitted from seeds to seedlings

Helvécio Della Coletta-Filho · Sérgio Alves Carvalho · Luis Fernando Carvalho Silva · Marcos Antonio Machado Eur J Plant Pathol (2014) 139:593–596

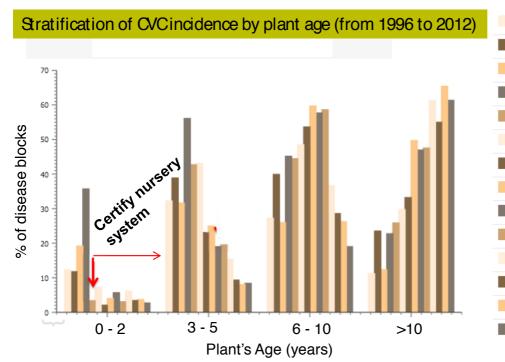
Evaluation by PCR of *Xylella fastidiosa* subsp. *pauca* transmission through citrus seeds with special emphasis on lemons (*Citrus limon* (L.) Burm. f)


Open Access Subscription Access

LACK OF EVIDENCE FOR TRANSMISSION OF XYLELLA FASTIDIOSA FROM INFECTED SWEET ORANGE SEED

J.S. Hartung, S. Nian, S. Lopes, A.J. Ayres, R. Brlansky

doi: 10.4454/JPP.V96I3.011 J Plant Pathol (2014) doi: 10.4454/JPP.V96I3.011






#### **CVC Management – Health nursery plants**

# Planting health young citrus plants

✓ Early 2003: Well established system for production of citrus plants under vector-proof screen house.











X. fastidiosa subsp. pauca in Brazil

**CVC Management – Minimizing vector population** 

## Vector population control

- Inspection of sharpshooter population by yellow stick trap

# **Chemical control**

Systemic and contact molecules

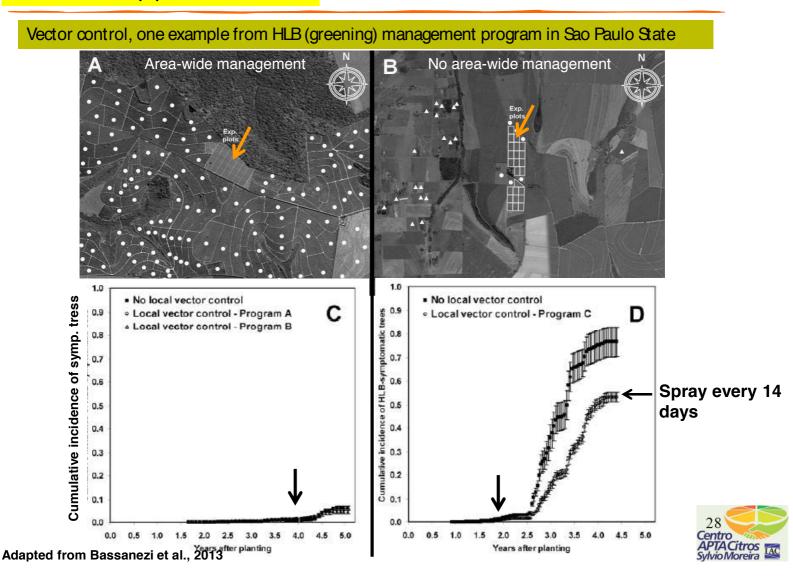
- Special attention to:
  - citrus blocks periphery and bordering forest edge

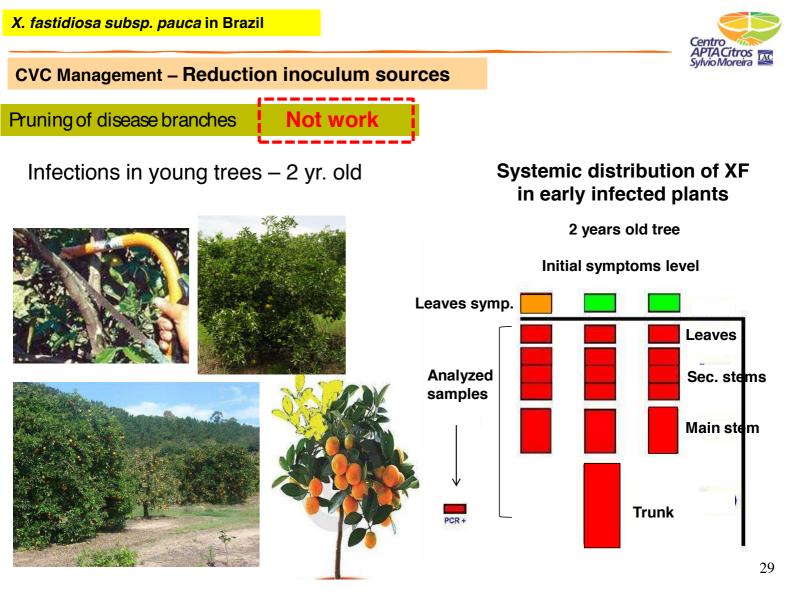
Contact

Spring and Summer seasons

Systemic




Young plants / soil humidity

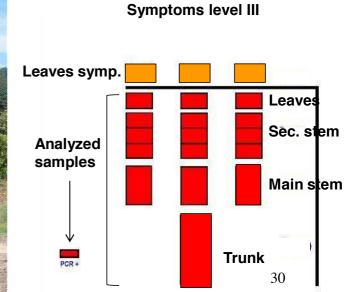

Older plants / dry seasons












**CVC Management - Reduction inoculum sources** 

Pruning of disease branches

High infection level – no biologic death but strong reduction on productivity.

# Systemic distribution of XF in severely infected plants



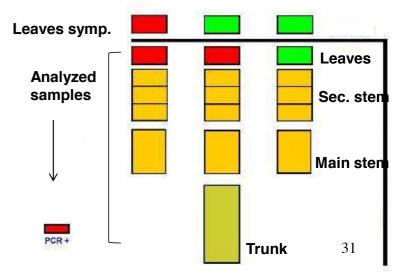




**CVC Management - Reduction inoculum sources** 

Pruning of disease branches

Late and recent infections in 4 yr old plants or higher


Work

Only in trees with initial leaves symptoms.





Systemic distribution of XF in plants with few symptoms





#### Conclusion

- There is no a cake receipt or a silver bullet to solve bacteria-vector borne diseases.

- There is management strategies !
  - Each pathosytem, geographic region, seasons of year, and spots (blocks) required different intensity of actions within the management package.

- To know the biology and the management the vector population in the one of most important key to break the disease epidemiology.

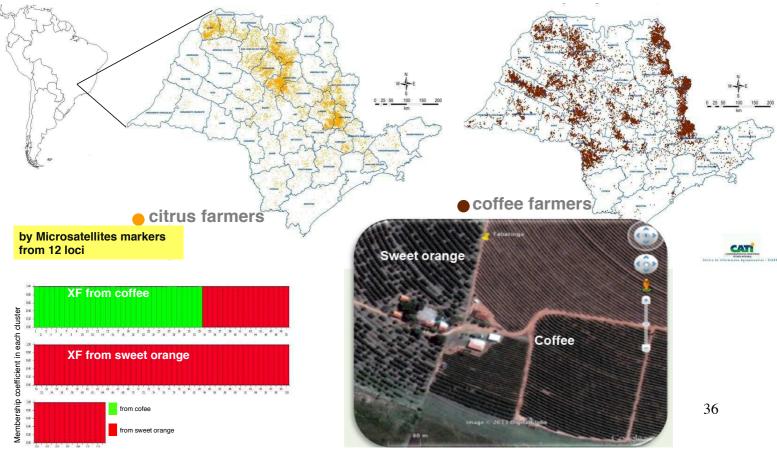




## helvecio@centrodecitricultura.br












from sweet orange from coffee

### Geographic distribution of coffee and citrus farms in SPS, Brazil

