UC Davis Olive Center At the ROBERT MONDAVI INSTITUTE

Master Milling CERTIFICATE COURSE

SEPTEMBER 20 - 23, 2016

SEPTEMBER 20 - 23, 2016

Master Milling CERTIFICATE COURSE

Sponsors

GOLD

BOUNDARY BEND OLIVES Australia's premier olive company

nia Extra Virgin Olive Oil

modern

BRONZE

GEA Westfalia Separator

Table of Contents

Speaker Biographies 1 2 Agenda, Day 1 Agenda, Day 2 3 Agenda, Day 3 4 Agenda, Day 4 5 Day One Presentations 6 83 Day Two Presentations 141 **Day Four Presentations Useful Conversions** 166

To Access UC Davis WiFi:

- Set your computing device to search for available WiFi networks.
- Find the network called "ucd-guest"
- Connect to a browser.
- Follow the self-registration instructions.

Speaker Biographies

Leandro Ravetti graduated as an Agricultural Engineer in Argentina, where he worked for the National Institute of Agricultural Technology in olive production research. He moved to Australia in 2001 where he now leads the Modern Olives technical team, which provides horticultural and olive specific technical advice to olive groves and olive oil processing plants that have planted nearly 3,500,000 trees, representing approximately 60% of the Australian olive industry by production. Leandro has been Executive Director of Boundary Bend Limited, Australia's leading fully integrated olive company, since 2005 and alternate director of the Australian Olive Association since 2009.

Flynn has guided the UC Davis Olive Center to international leadership in olive research and education. He also oversees the production of UC Davis Olive Oil and other olive products that help support the center. He served 16 years as a legislative and policy consultant in the California State Legislature and also managed a small farm prior to coming to UC Davis. He has a M.A. in Political Science from Rutgers University. Based on his achievements with the Olive Center, Dan has received top staff awards from College of Agricultural and Environmental Sciences and Chancellor Linda Katehi. He has made guest appearances on The Dr. Oz Show, as well as on The Doctors and CNN.

Dr. Wang is the research director of the UC Davis Olive Center and a faculty at the Department of Food Science and Technology. She has a PhD in Organic Chemistry from UC Davis and oversaw the olive center's 2010 and 2011 studies evaluating the quality of extra virgin olive oil in supermarkets, which received worldwide attention. Dr. Wang has developed more than 80 research projects in table olives and olive oil, ranging from international standards, best practices for harvesting/processing/storage, to byproduct management and health effects.

Leandro Ravetti

Executive Director, Boundary Bend Limited

Dan Flynn

Selina Wang

PhD, Research Director, UC Davis Olive Center

Day 1 Agenda

8:30 A.M.	Registration
9:00 A.M.	Welcome and Overview
	Dan Flynn
9:10 A.M.	5 Things to Know Before Becoming a Miller
	Dan Flynn
9:50 A.M.	Introduction to Olive Oil Production
	Leandro Ravetti
0:40 A.M.	Break
1:00 A.M.	Designing a Milling Operation for Maximum Efficiency
	Leandro Ravetti
12:00 P.M.	Lunch
1:00 P.M.	A Miller's Guide to Analyzing Olive Oil
	Dan Flynn, Selina Wang
1:45 P.M.	Influence of Agronomic Aspects on Olive Oil Quality
	Leandro Ravetti
3:00 P.M.	Break
3:15 P.M.	Receival Area, Fruit Classification, Washing, Storage
	Leandro Ravetti
4:00 P.M.	Adjourn
	No-host gathering at City Tavern, 216 F Street, Davis

Day 2 Agenda

8:00 A.M.	Coffee, Tea, Pastries
8:30 A.M.	Crushing, Paste Preparation, Malaxing Temperature & Time
	Leandro Ravetti
0:00 A.M.	Break
0:30 A.M.	Crushing, Paste Preparation, Processing Aids
	Leandro Ravetti
1:30 A.M.	Evaluating Fruit and Making Paste Preparation Decisions
	Olive2Bottle team; Leandro Ravetti
12:00 P.M.	Lunch
1:00 P.M.	Solid – Liquid Phase Separation
	Leandro Ravetti
2:30 P.M.	Break
2:50 P.M.	Liquid – Liquid Phase Separation
	Leandro Ravetti
3:30 P.M.	How Processing Variables Affect Quality
	Leandro Ravetti
4:00 P.M.	Adjourn
	No-host gathering at Our House, 808 2nd street, Davis

SEPTEMBER 20 - 23, 2016

Master Milling

Day 3 Agenda

8:00 A.M.	Board Bus and Depart UC Davis
9:40 A.M.	Yolo Press (Depart)
	Mike Madison
1:30 A.M.	Bondolio (Depart)
	Karen and Malcolm Bond
4:00 P.M.	Boundary Bend (Depart)
	Adam Englehardt and Leandro Ravetti
4:30 P.M.	Arrive UC Davis

Day 4 Agenda

8:00 A.M.	Coffee, Tea, Pastries
8:30 A.M.	Storage – Tanks – Buildings
	Leandro Ravetti
9:30 A.M.	How Processing Variables Influence Oil Quality and Yield
	Leandro Ravetti
0:15 A.M.	Break
0:45 A.M.	Blending
	Leandro Ravetti
2:00 P.M.	Lunch
1:00 P.M.	Economic Analysis
	Leandro Ravetti
1:30 P.M.	Varietal Considerations for Processing: Arbequina as a Case Study
	Leandro Ravetti
2:20 P.M.	Break
2:40 P.M.	The Future of Olive Oil Processing – Discussion and Wrap-Up
	Dan Flynn, Leandro Ravetti, Selina Wang
4:00 P.M.	Adjourn, Receive Course Certificates

Day 1

SEPTEMBER 20 - 23, 2016

Master Milling

6

5 THINGS TO KNOW BEFORE BECOMING A MILLER

Dan Flynn, Director, UC Davis Olive Center

Get a business plan: Goals

- Why do I want to do this?
- What need am I filling?
- What is my business philosophy?
- How do I want my business to evolve?

Get a business plan: Market research

- Cheap, low-quality imports dominate
- Consumers don't know the difference
- Competition is stiff in all channels
- · Quality oils gaining momentum
- · Expensive oils may collect dust

Choose the processing site carefully

- Meet with local officials at the beginning
- Put site in the right place
- Design for expected growth
- Building permits
- Use permits
- Make it easy for local officials
- · Waste management plan
- Storm water runoff plan

Think beyond the equipment

- Remember: working capacity = 60 75% of rated capacity for decanters
- Consider service responsiveness
- Stock extra parts
- Be prepared when the truck arrives

Food processing carries legal obligations

- Processed food registration
- Food facility registration
- Seller's permit
- Use/tax permit
- Organic registrations
- Farm product handler license
- Weighmaster license

Consider options

- Contract processing
- Co-packing
- Private label
- Work for an existing company

Further research

- Miller's checklist (on flash drive)
- Olive Center website, "Learn" tab

B O U N D A R Y B E N D LINITED Great variability in	Low Avera	ge World '	Yields
			Yields (litres/ha)
Spain		38.6%	482.6
Italy		22.8%	483.0
Greece		13.6%	400.8
Turkey		4.3%	218.2
Tunisia		6.2%	119.0
Boundary Bend (aver	rage 2015)	0.3%	2,837.0
Average			318.2
Source: IOC/FAO/BBL			

	World Production and Consumption				
Analysis of consumption	growing trend	ds			
Parameter			Annual Growth		
Consumption (x 1000 Tn)	2,897	3,720	2.30%	3,720	-823
Population (x 1M)	6,869	7,756	1.11%	3,271	-374
Consumption per capita (kg/person/year)	0.42	0.48	1.18%		
•The world would require the increasing demand. •At current planting rates,	between 1,34 world area u	40,000 and 2	,950,000 ha c vill grow only	of average yie up to 330,00	elds to cover 10 ha.
	and the second second	A REAL PROPERTY AND		- the state of the	and the second se
133					

Concentration of demand and atomised offer

 70 to 75% of the world's bottled olive oil is sold by 6 companies (DeOleo (Bertolli, Carbonell, Carapelli, Koipe); Sovena Group (East Coast Olive Oil, Agribética, ALCO);
Ybarra Group (Ybarra, MiGaSa, Heinz); Aceites del Sur (CooSur, La Española); Hojiblanca (+Cargill); and Borges.

• There is a declared amount of approximately 2.5M growers in Europe at an average of 2.1 ha per grower.

• There are close to 11,000 declared processing plants in Europe at an average of just 192 tonnes of oil/processing plant.

PRODOTTO	ANNO-MESE- SETT.	PREZZO	VARIAZ. SU SETT. PREC.	VARIAZ. SU SETT. ANNO PREC.	GRAFICO
Olio dop - Alto crotonese	2015-1-5	7.80 €Kg	0.0%	85,7% 🕇	inst.
Olio dop - Brisighella	2015-1-5	19,75 €/Kg	0,0%	0,7% 🕇	int.
Olio dop - Canino	2015-1-5	9.00 €Kg	0.0%	10,9% 🕇	-
Olio dop - Cilento	2015-1-5	6.60 €Kg	0.0%	nd	<u>iner</u>
Olio dop - Colline Salernitane	2015-1-5	7,50 €Kg	0.0%	70,5% 🕇	int.
Olio dop - Dauno	2015-1-5	6.05 €Kg	2,5% 🕇	05,8% 🕇	inst.
Olio dop - Garda	2015-1-5	19.50 €/Kg	0.0%	110,8% 🕇	-
Olio dop - Laghi Lombardi	2015-1-5	18,00 €/Kg	0.0%	24,1% 🕇	Mark
Olio dop - Lametia	2015-1-5	8,10 €Kg	0.0%	100,0%	Mark
Olio dop - Monte Etna	2015-1-5	7,05 €Kg	0,0%	nd	Math
Olio dop - Monti Iblei	2015-1-5	7.80 €Kg	0.0%	15,0% 🕇	Mark.
Olio dop - Riviera dei fiori	2015-1-5	12,50 €/Kg	0.0%	28,2% 🕇	Mark
Olio dop - Riviera Ligure	2015-1-5	11.75 €/Kg	0.0%	20,5%	Mark
Olio dop - Terre di Bari	2015-1-5	6,05 €Kg	0,0% 🐡	113,0% 🕈	inter a
Olio dop - Terre di Siena	2015-1-5	10,75 €/Kg	0.0%	51,4%	Mest
Olio dop - Umbria	2015-1-5	8,75 €Kg	0.0%	10,7% 🕇	in the second se

OLIVE OIL PROCESSING COURSE Designing a milling operation for maximum efficiency

	Waste I	Disposal			
	Water Red	quirements			
		Extraction system	í.		
Measurements	Prove	Centrif	Centrifugation		
	Fless	3 phases	2 phase		
Olive washing (l/kg)	0.04	0.09	0.05		
Decanter (I/kg)	0.40	0.90	0.00		
Centrifuge (I/kg)	0.20	0.20	0.15		
General cleaning (l/kg)	0.02	0.05	0.05		
Total (l/kg)	0.66	1.24	0.25		

	N	/aste	Disp	osal		
		Water (Character	istics		
			Processir	ng system		
Measurements		3 phases		2 phases		
	Solids	Oil %	Oxygen Demand	Solids	Oil %	Oxygen Demand
Olive washing	0.51 %	0.14 %	7.9 g/kg	0.54 %	0.10%	8.7 g/kg
Water centrifuge	6.24 %	0.96 %	73.8 g/kg	0.00 %	0.00 %	0.0 g/kg
Oil centrifuge	0.00 %	0.00 %	0.0 g/kg	1.43 %	0.57 %	11.7 g/kg
 Final stream	5.67 %	0.88 %	67.2 g/kg	1.08 %	0.38 %	10.5 g/kg

		Wast	e Disp	osal	
		Lucerne hay	Pasture hay	Wheat	Wet pomace flesh
	Dry matter	90%	88%	90%	18.75%
	Crude Protein	17%	6%	13%	2.6%
	Energy (Mj/kg)	8.50	8.30	12.00	4.20
	Moisture penalty	11.11	11.36	11.11	53.33
	Prot. based cost	0.65	1.89	0.85	20.51
	Energy based cost	1.31	1.37	0.93	12.70
	Overall cost	0.98	1.63	0.89	16.61
modern	Cost index vs wet pomace flesh	16.94	10.18	18.65	1.00

A MILLER'S GUIDE TO ANALYZING OLIVE OIL

Dr. Selina Wang, Chemist, UC Davis Olive Center Dan Flynn, Director, UC Davis Olive Center

Grades and standards: two types of oil

Olive oil is the oil solely obtained from the fruit of the olive tree, to the exclusion of oils obtained with solvents.

Olive-pomace oil is the oil obtained by treating olive pomace with solvents.

Classifications

- A. Virgin olive oil
- B. Refined olive oil (virgin that is refined)
- c. Olive oil (mostly refined with bit of virgin)
- **D. Olive-pomace oil** (mostly refined olivepomace oil, with bit of virgin)

Grades available in US

Extra Virgin Olive Oil

Refined Olive Oil (Light, Extra Light)

Olive Oil (Pure)

Olive-Pomace Oil

Chemistry

	TESTS	INDICATORS
Quality	Free Fatty Acidity Peroxide Value UV Absorbency DAGs PPP	Oxidation, fermentation, hydrolysis
Purity	Fatty Acid Profile Trans-fatty Acid Profile Sterol Profile Stigmastadiene Content Triacylglycerol Content Wax Content Unsaponifiable Matter Content of 2-glyceryl Monopalmitate	Whether the oil is olive oil

Grade	Free Fatty Acidity	Peroxide Value	UV K232	UV K270	UV AK	DAGs	PPP
Extra Virgin	≤0.8	≤20	≤2.50	≤0.22	≤0.01	≥35	≤17
Virgin	≤2.0	≤20	≤2.60	≤0.25	≤0.01		
Ordinary	≤3.3	≤20		≤0.30	≤0.01		
Lampante	>3.3	No limit					

Free fatty acids

- No taste
- Pro-oxidant
- A quick test to assess initial oil quality
- · Every batch should be tested during processing
- Changes very little after oil is produced, under proper storage conditions
- Fresh oil: ≤ 0.3%
- IOC standard: ≤ 0.8%

Peroxide Value

- Crude method on primary oxidation
- Provides limited information on the oil's condition after storage/bottling
- · Every batch should be tested during processing
- Fresh oil: $\leq 9 \text{ meq } O_2/\text{kg}$
- $\,$ If more than 10 meq O_2/kg right after processing -> short shelf life
- IOC Standard: ≤ 20 meq O₂/kg

UV Absorbance

- · Increases due to oxidation or refining process
- Increases with heat, light and oxygen
- · Generally correlates with peroxide value
- Cannot be used alone but useful when combining with other chemical parameters

DAGs

- Freshness indicator
- Fresh oil: > 75%
- Low values are associated with bad quality fruit and processing
- Decreases in storage over time, especially with high storage temp and high free fatty acidity
- IOC Standard: None
- Australia and California Standard: 35

PPP

- Freshness indicator
- Fresh oil: < 3%
- Increases in storage over time, especially with high storage temp and exposure to light
- · With time and in refining, PPP disappears completely

Sensory standards of virgin olive oils

Grade	IOC	USDA/Codex
Extra Virgin	Defects = 0 & Fruity > 0	Defects = 0 & Fruity > 0
Virgin	Defects > 0 \leq 3.5 & Fruity > 0	Defects > 0 \leq 2.5 & Fruity > 0
Ordinary	Defects > $3.5 \le 6.0$ & Fruity > 0, or Defects ≤ 3.5 & Fruity = 0	
Lampante	Defects > 6.0	Defects > 2.5

Causes of sensory defects Cause Defect Fruit condition Rancid Fusty Winey/Ninegary Musty Frozen Dried Grubby Processing/Storage Rancid Metallic Heated/Burnt Muddy Sediment

OLIVE OIL PROCESSING COURSE Agronomic Aspects Factors which are difficult to change: Variety. • Environmental conditions. Factors which are easier to manipulate: · Pests & diseases. • Irrigation.

49

- Harvest & transport.
- Pruning.
- Fertilisation.

Ş

			_		_	-		_			-		-	_	
	- 01	IV	E I	ОШ	- P	R(ЭС:	FS	SII	МG	- C:		IRS	SE.	
										10					
-															_
SUMMARY OF OILS PR	ODUCED A	I BOORI	AND BC	UNDARY	BEND T	D DATE									
Madaba							Fatt	y Acid Pro	file						
variety	C14.0	C16:0	C15:1	C17:0	C17:1	C18:0	C18:1	C18:2	C18:3	C28:0	C20:1	C22:0	C22:1	C240	C24:1
rbequina Average	<0.1	14.8	1.7	0.1	0.2	1.7	70.4	9.7	0.8	0.4	0.2	0.1	< 0.1	0.1	<(
rbequina Std. Dev.	0.0	0.3	0.5	0.0	0.1	0.1	3.6	2.9	0.1	0.1	0.1	0.0	0.0	0.0	
arnea Average	× 0.1	11.7	0.9	0.1	0.1	2.1	72.2	11.4	0.7	0.4	0.3	0.1	< 0.1	0.1	×(
arnea Std. Dev.	0.0	1.1	0.1	0.0	0.0	0.2	3.3	2.5	0.1	0.1	0.0	0.0	0.0	0.0	-
oratina Average	< 0.1	11.9	0.5	0.1	0.1	1.9	76.5	7.1	8.0	0.4	0.4	0.1	< 0.1	0.1	<
cantolo Averano	0.0	0.8	0.1	- 0.0	0.1	0.1	70.0	0.9	0.0	0.1	0.0	0.0	0.0	0.0	
rantolo Std. Deu		19.2	1.4	0.0	0.1	0.2	70.2	11.2	0.4	0.5	0.0	0.1	40.1	0.1	
Tantolo Stu. Dev.	10.0	11.2	0.2	0.0	0.0	22	2.0	0.4	0.1	0.1	0.0	0.0	10.0	0.0	-
oronaiki Std. Dav	0.0	1.2	0.5	0.0	0.1	0.4	2.0	4.0	0.1	0.4	0.5	0.1	0.0	0.0	
ercino Average	×01	13.5	1.2	€01	0.1	1.8	73.9	80	0.7	0.1	0.1	0.1	< 0.1	0.0	-
eccino Std. Dev.	0.0	0.9	0.1	0.0	0.0	0.1	1.7	1.9	0.1	0.1	0.1	0.0	0.0	0.0	
Picholine Average	< 0.1	13.0	1.0	0.1	0.1	21	71.0	11.0	0.9	0.4	0.3	0.1	< 0.1	0.1	
Picholine Std. Dev.	0.0	1.3	0.3	0.0	0.0	0.4	3.9	4.2	0.1	0.0	0.1	0.0	0.0	0.0	
Picual Average	< 0.1	11.9	1.0	0.1	0.1	28	77.6	51	0.8	0.3	0.3	0.1	0.1	0.1	
Picual Std. Dev.	0.0	1.5	0.2	0.0	0.0	0.3	4.0	2.9	0.1	0.1	0.1	0.0	0.0	0.0	
						Felty Aci	d Profile								
Australian Values*	-										0.00				
Australian Values* Parameter	C14:0	C16:0	C16:1	C17:0	C17:1	C18:0	C18:1	C18:2	C18:3	C200	0.2061	C2250			
Parameter Iverage	C14.0	C16:0	C16:1	C17:0	C17:1	C18:0	C18:1 73.6	C182 9.2	C18:3 0.7	0.3	0.3	0.09			
Parameter Parameter Werage Hinimum	C14:0 < 0.1 < 0.1	C16:0 12.7 6.8	C16:1 1.1 0.3	C17:0 0.05 0.02	0.1 0.04	C18:0 1.9 1.1	C18:1 73.6 52.2	C18:2 9.2 2.2	C18:3 0.7 0.3	0.3	0.3	0.09			

OLIVE OII Arbequina Fatty A environments	L PROCE	SSING C	OURSE
Place/Fatty Acids	C 16:0	C 18:1	C 18:2
La Rioja (Argentina)	20	52	21
Andalusia (Spain)	16	65	13
Catalonia (Spain)	13	72	10
modern			

Soft Nose

- Planting resistant varieties (like Picual). Manzanillo, Frantoio and Barnea are considered to be highly sensitive to this kind of

and barried are considered to be many schedule to the many diseases;
- Chemical control with fungicides early in the ripening period, particularly if there has been some kind of physical damage (like hail). The most recommended fungicides in the Mediterranean area are copper-containing fungicides such as 0.4% mixtures of copper oxychloride (37.5%) and zineb (15%) and 2%. Bordeaux mixture.

0.4% mixtures of copper oxychloride (37.5%) and zineb (15% and 2% Bordeaux mixture.
Repeating the chemical control if the environmental conditions are suitable for secondary infections (73°F (59°F-77°F), high humidity & free water (Rain or dew);
Harvesting as soon as possible, once the oil is completely accumulated.
Withholding periods!

 \checkmark

Ş

Frost Damage

- Sudden cold change will turn the olives into a brownish colour.
- Gradual cold change could lead to olive dehydration (Reversible or not).
- Both will affect the organoleptic characteristics of the oil, its acidity and peroxides value.

Frost Damage

No significant problems with chemical quality parameters up to 2-3 weeks after frost event.
Chemical parameters significantly affected but within the EV category 4 weeks after frost event.

• Peroxides above EV limits 5 weeks after frost event.

- Acidity above EV limits 6 weeks after frost event.
- Organoleptic issues almost immediate.

Modern

		Maturity	Index
	Chiorophylis Carotenoids	ļ	Polyphenols
	Flavour	>	Sweeter
	Colour	\rightarrow	Green to Yellow
	Shelf Life		Lower
	Natural Drop		Higher
odern	Marino Uceda – Australia 2005		

Fruit dama	ge
Average oil acidity vs. harvester	(Olive West)
narvester An Right Heads	Aciaity (%
Ag-right fieldus AOH Shaker + heaters	0.31
	0.22
Lolossus	
Grape Harvester	1 0.20
Grape Harvester Gregoire 133	0.20
Grape Harvester Gregoire 133 Hand harvest	0.20
Corossus Grape Harvester Gregoire 133 Hand harvest Sicma shaker + pneumatic rake	0.20 0.31 0.13 s 0.56

I	000	
MOO vs. harvester (Boort	Estate)	
Harvester	MOO	MOO %
Harvester	MOO	MOO %
Grape Harvester	1.54	7.70
Harvester	MOO	MOO %
Grape Harvester	1.54	7.70
Gregoire 133	1.78	8.90
Harvester	MOO	MOO %
Grape Harvester	1.54	7.70
Gregoire 133	1.78	8.90
Coffee Harvester	1.59	7.96
Harvester	MOO	MOO %
Grape Harvester	1.54	7.70
Gregoire 133	1.78	8.90
Coffee Harvester	1.59	7.96
Side by side shaker	1.59	7.80

modern

Harvesting-Processing delay

• One of the most important parameters affecting oil quality.

• Fruit should be processed within 12 hours to avoid quality issues.

• A delay longer than 24 hours will most likely have an impact on the oil quality.

 \bullet Aerobic and anaerobic fermentations inside the fruit pile end up increasing FFA, FAEEs, DAGs, etc.

• Organoleptic problems = Fusty and Musty!!

 \checkmark

Processing Plant Manager

• Maximise oil yields.

Ş

- Minimise production costs.
- Obtain maximum quality oils.Make the most cost effective decisions at all times.
- Liaise with the grove manager/s.
- Liaise with marketing department.

Fru	it Temperat	ure
	Depth (cm/inches)	Temperature (°C/°F)
	0 10/4	22/72 38/100
	30/12 50/20	45/113 42/108
	80/32	45/113
	150/60	32/90

Oil and moisture content

Fruit moisture measurement

- Weigh cup without sample ("pc")
- Weigh fruit sample, approx. 5 grams ("pm")
- Put cup and sample in oven at 130°C/266°F for 1 hour
 Take sample, turn it over and put it back in the oven

for another 1 hour at the same temperature. Ensure no sample is lost during this step

 $_{\circ}$ Take sample from oven and let it cool down in a dry place

• Weigh cup and dried sample ("pc+r")

 \checkmark

• Fruit moisture % = $(("pc"+"pm") - ("pc+r")) \times 10$ "pm"

Fruit storage

 High risk of ↑↑ FFA if ripe, mashy fruit ↑↑ Chlorophyls content and greener oil if olives start fermenting Risk of increasing E+U, FAEEs and DAGs

Receival area assistant

Before the season:

Suggest improvements in the receival area.General cleaning and maintenance of the receival equipment.

During the season:

- General cleaning and maintenance of the equipment.
 Inspection of the fruit and directing lines or washing needs.
 Fruit sampling.
 Changing washing water.
 Evaluating oil losses in washing water.
 Evaluating MOO after washing.
 Rotating fruit in clean fruit hoppers.

modern

Day 2

SEPTEMBER 20 - 23, 2016

Master Milling

			Cr	ush	ing				
		Effect of	Fruit St	oning or	Olive C)il Ou	ality		
		M. Patun Istituto di Ricerche	ni*, S. Terenzia sulta Otivicoltura	ini, M. Ridolfi —Consiglio Nazi	, and Giuseppo onale delle Ricerch	Fontanaz	za rugia, Italy		
TABLE 2 Free Acidity, from Two Dit	Peroxide Nur ferent Extrac	nber, Total Pheno tion Systems	ls, o-Diphenols, !	ipectrophotome	tric Indices, and F	Racimat Test	of Oils Obta	ined	
Sample ⁴	Oil yield (% FW ^b)	Free acidity (calculated as oleic acid, g%)	Peroxide number (meg O, kg ⁻¹)	Polyphenols ^e (mg kg ⁻¹)	o-Diphenols ^d (mg kg ⁻¹)	1% K ₂₃₂ (1 cm)	1% K ₂₇₀ (1 cm)	ΔΚ	Rancima test (b)
NBw100ve	17.4	0.21	56	181	54	0.4	0.01	0.024	8.7
NBs100yg	15.8	0.18	4.5	140	36	0.7	0.07	0.001	6.7
		0.25	3.5	169	44	0.4	0.05	0.001	6.9
NBwd0cc	18					0.0	0.18	0.005	8.2
NBw40cc NBs40cc	18 15.2	0.22	3.7	194	49	0.9	0.10	0.000	
NBw40cc NBs40cc	18 15.2	0.22	3.7	194	47	17	0.15	0.003	5.0
NBw40cc NBs40cc Mw100yg Ms100yg	18 15.2 18.04 15.8	0.22 0.34 0.41	3.7 5.5 7.6	194 115 126	49 29 33	1.7 1.4	0.15	0.003	5.0 5.0
NBw40cc NBs40cc Mw100yg Ms100yg	18 15.2 18.04 15.8	0.22 0.34 0.41 0.76	3.7 5.5 7.6	194 115 126	49 29 33 45	1.7	0.15 0.08	0.003 0.001	5.0 5.0
NBw40cc NBs40cc Mw100yg Ms100yg Mw80cc Ms80cc	18 15.2 18.04 15.8 19.1 17.5	0.22 0.34 0.41 0.76 0.71	3.7 5.5 7.6 12.9 9.0	194 115 126 119 130	47 29 33 45 48	17 14 21 17	0.15 0.08 0.12 0.09	0.003 0.001 0.002 0.001	5.0 5.0 3.5 4.9
NBw40cc NBs40cc Mw100yg Ms100yg Ms80cc NEw100yg	18 15.2 18.04 15.8 19.1 17.5	0.22 0.34 0.41 0.76 0.71 0.44	3.7 5.5 7.6 12.9 9.0 7.0	194 115 126 119 130	47 29 33 45 48 29	1.7 1.4 2.1 1.7	0.15 0.08 0.12 0.09 0.10	0.003 0.001 0.002 0.001 0.002	5.0 5.0 1.5 4.9 5.8
NBw40cc NBs40cc Mw100yg Ms100yg Mw80cc Ms80cc NEw100yg NEs100yg	18 15.2 18.04 15.8 19.1 17.5 15.6 13	0.22 0.34 0.41 0.76 0.71 0.44 0.43	3.7 5.5 7.6 12.9 9.0 7.0 6.4	194 115 126 119 130 189 172	47 29 33 45 48 29 24	17 14 21 17 18 13	0.15 0.08 0.12 0.09 0.10 0.09	0.003 0.001 0.002 0.001 0.002 0.001	5.0 5.0 1.5 4.9 5.8 6.1
NBw40cc NBs40cc Mw100yg Ms100yg Mw80cc Ms80cc NEw100yg NEs100yg Cw70cc	18 15.2 18.04 15.8 19.1 17.5 15.6 13 19.7	0.22 0.34 0.41 0.76 0.71 0.44 0.43 0.23	3.7 5.5 7.6 12.9 9.0 7.0 6.4 5.6	194 115 126 119 130 189 172 251	47 29 33 45 48 29 24 88	17 14 21 17 18 13	0.15 0.08 0.12 0.09 0.10 0.09 0.18	0.003 0.001 0.002 0.001 0.002 0.001	5.0 5.0 3.5 4.9 5.8 6.1 8.7
NBw40cc NBs40cc Mw100yg Ms100yg Mw80cc Ms80cc NEw100yg NEs100yg Cw70cc Cs70cc	18 15.2 18.04 15.8 19.1 17.5 15.6 13 19.7 17.3	0.22 0.34 0.41 0.76 0.71 0.44 0.43 0.23 0.20	3.7 5.5 7.6 12.9 9.0 7.0 6.4 5.6 4.8	194 115 126 119 130 189 172 251 272	49 29 33 45 48 29 24 88 94	17 14 21 17 18 13 13 14	0.15 0.08 0.12 0.09 0.10 0.09 0.10 0.09 0.18 0.14	0.003 0.001 0.002 0.001 0.002 0.001 0.001 0.001	5.0 5.0 3.5 4.9 5.8 6.1 8.7 9.5
NBw40cc NBs40cc Mw100yg Mw100yg Mw80cc Mw80cc NEw100yg NEs100yg Cw70cc Cs70cc Bw80cc	18 15.2 18.04 15.8 19.1 17.5 15.6 13 19.7 17.3	0.22 0.34 0.41 0.76 0.71 0.44 0.43 0.23 0.20 0.64	3.7 5.5 7.6 12.9 9.0 7.0 6.4 5.6 4.8 12.1	194 115 126 119 130 189 172 251 272 47	49 29 33 45 40 29 24 80 94	17 14 21 17 18 13 13 14	0.13 0.08 0.12 0.09 0.10 0.09 0.18 0.14 0.17	0.003 0.001 0.002 0.001 0.001 0.001 0.001 0.001	5.0 5.0 3.5 4.9 5.8 6.1 8.7 9.5 3.7

Crushing

- The most common grid sizes are 5, 6 and 7 mm.
- We should try to crush as fine as possible.

modern

- With small (< 3.0 gr), unripe (<4.0 MI), dry fruit (<56.0% moisture) use smaller grid sizes (5).
- With large, ripe, high moisture fruit use larger grid holes (6 or 7).

C	rushing	
Crushing adjustment wit	h Picual 62.3% moi	sture and 3.8 M
Set up	Processing speed	Extraction efficiency
Grid Nº 5	2.75 tn/hr	78.46%
No talc or enzymes		
Grid Nº 5	3.45 tn/hr	88.25%
Talc & enzymes		
Grid Nº 7	3.75 tn/hr	75.45%
No talc or enzymes		
Grid Nº 7	4.15 tn/hr	88.74%
Talc & enzymes		

Crush Crushing Double grid	Polyphenois (ppm) 257	Shelf life (days)	ruitiness	Crushing Bitterness	Pungency
Crushing Double grid	Polyphenols (ppm) 257	Shelf life (days)	Fruitiness	Bitterness	Pungency
Double grid	257	608			
		008	3.8	2.8	2.6
Single grid	334	664	3.7	3.7	2.9
Double grid	123	935	4.2	1.7	2.1
Single grid	208	901	4.2	1.9	2.7
\$	ingle grid	ingle grid 208	ingle grid 208 901	ingle grid 208 901 4.2	ingle grid 208 001 4.2 1.9

Processing degree of difficulty

- 1. High fruit moisture. Emulsions formation.
- 2. Lipophyllic affinity of the pulp.
- 3. Poor paste preparation.

Modern

 \checkmark

Ç

.

Crushing

- Emulsions
- They are a very stable mix of oil and • water created by the crusher.
- The mix contains intermediate densities between water, oil and pomace that are difficult to separate by centrifugation.
- Lipoproteic membrane (microgel) that does not free up the oil.
- $\uparrow\uparrow$ Pectins = $\uparrow\uparrow$ Emulsions (green fruit).
- $\uparrow\uparrow$ Fruit moisture = $\uparrow\uparrow$ Emulsions

Crushing

- Emulsions
- Increase crushing size. Allow for a longer malaxing time that is . not excessive.
- Cold or frozen fruit tends to form emulsions more easily.
- Talc Helps avoiding the formation of emulsions.
- Enzymes Help breaking the emulsion already formed.
- Common salt & calcium carbonate.

			M	alaxi	ng				
		Oil droplets diameter (microns)							
		<15	15-30	30-45	45-75	75-150	>150		
	After crushing	6	49	21	14	4	6		
	After malaxing	2	18	18	18	19	25		
modern	Sour	ce: Di G	iovacchin	0					

	Μ	alaxing		
The Malaxation Proces Olive Oil Quality and Control of Oxygen Co Virgin Olive Oil	ss: Influence on the Effect of the ncentration in me ² , Pade Assessed ¹ and Notes G. Pr out and March Assessed ¹ and Notes G. Pr	ace ^a		
TABLE 9.2 The amount of C ₆ an generated by the two different malaxation conditions on volati	nd C ₅ compounds, der paste malaxation con ile compounds. Wher ts of 'pleasant' volatik	rived from the lipoxygen ditions being studied. TI a air was used in the hea e compounds than when	ase pathway, found in be effect of the two did d-space of the mixer, t nitrogen was used.	virgin olive ferent paste he oils extra
TABLE 9.2 The amount of C ₆ an generated by the two different malaxation conditions on volati contained much higher amount Volatile compounds (mgkg ⁻¹)	nd C ₅ compounds, der paste malaxation con ile compounds. When ts of 'pleasant' volatile 100%	rived from the lipoxygen ditions being studied. Th air was used in the hea compounds than when air	ase pathway, found in he effect of the two did d-space of the mixer, t nitrogen was used. 100% ni	virgin olive ferent paste he oils extra
TABLE 9.2 The amount of C ₄ an generated by the two different malaxation conditions on volati contained much higher amount Volatile compounds (mg kg ⁻¹)	ad C ₅ compounds, de paste malaxation con le compounds. Wher ts of 'pleasant' volatile <u>100%</u> m	rived from the lipoxygen ditions being studied. Th a air was used in the hea e compounds than when air SD	ase pathway, found in the effect of the two did d-space of the mixer, t nitrogen was used. 100% ni m	virgin olive iferent paste he oils extra trogen SD
TABLE 9.2 The amount of C ₆ an generated by the two different malaxation conditions on volati contained much higher amount Volatile compounds (mg kg ⁻¹) Hexanal	and Cs compounds, de paste malaxation com ile compounds. When ts of 'pleasant' volatile <u>100%</u> <u>m</u> 11.6	rived from the lipoxygen ditions being studied. TI a ir was used in the hea e compounds than when air SD 0.5	ase pathway, found in the effect of the two did d-space of the mixer, t nitrogen was used. 100% ni m 3.1	virgin olive iferent paste he oils extra trogen SD 0.1
TABLE 9.2 The amount of C ₆ an generated by the two different malaxation conditions on volati contained much higher amount Volatile compounds (mgkg ⁻¹) Hexanal trans-2-Hexenal	w take 18 ad C ₅ compounds, deel paste malaxation con ile compounds. When is of 'pleasant' volatile <u>100%</u> m 11.6 147.3	rived from the lipoxygen ditions being studied. It a air was used in the hea compounds than when air 0.5 5.8	ase pathway, found in se effect of the two dii d-space of the mixer, t nitrogen was used. 100% ni m 3.1 43.5	virgin olive iferent paste he oils extra trogen SD 0.1 2.1
TABLE 9.2 The amount of C ₆ an generated by the two different malaxation conditions on volati contained much higher amount Volatile compounds (mgkg ⁻¹) Hexanal Lesenal Li Hexanal	and C ₅ compounds, dee paste malaxation con ile compounds. Where is of 'pleasant' volatili <u>no</u> <u>11.6</u> 11.6 147.3 45.2	rived from the lipoxygen ditions being studied. TI air was used in the bea compounds than when air <u>SD</u> 0.5 5.8 3.1	ase pathway, found in ne effect of the two di d-space of the mixer, t nitrogen was used. 100% ni m 3.1 43.5 3.9	virgin olive iferent paste he oils extra trogen SD 0.1 2.1 0.7
TABLE 9-2. The amount of C ₂ an generated by the two different malaxation conditions on volati contained much higher amount Volatile compounds (mg.kg ⁻¹) Hexanal Tamo-24 Reseal 14 Resanol tamo-24 Reseal	nd C ₅ compounds, dee paste malaxation con ile compounds. Wher is of 'pleasant' volatile <u>100%</u> m 11.6 147.3 45.2 11.9	rived from the lipoxygen ditions being studied. TI air was used in the hea compounds than when air 0.5 5.8 3.1 0.3	ase pathway, found in he effect of the two did d-space of the mixer, t nitrogen was used. 100% ni 3,1 43,5 3,9 4,6	virgin olive iferent paste he oils extra trogen 0.1 2.1 0.7 0.9
TABLE 9.2 The amount of C ₆ an generated by the two different malaxation conditions on volati contained much higher amount Volatile compounds (mgkg ⁻¹) Hexanal texan-2 Hexenal 1 Hexanal case-2 Hexenal -1 Hexanal case-3 Hexen-1-ol	nd Cos compoundos, dee paste malaxation con lie compoundos. Where ts of 'pleasant' volatile 11.6 147.3 45.2 11.9 7.7	rived from the lipoxygen ditions being studied. The air was used in the heas compounds than when air 0.5 5.8 3.1 0.3 0.4	ase pathway, found in se effect of the two di d-space of the mixer, t nitrogen was used. 100% ni 3.1 43.5 3.9 4.6 1.4	virgin olive iferent pasti he oils extra trogen SD 0.1 2.1 0.7 0.9 0.1

_

			IVIä	ala)	KIĽ	<u>ig</u>		
nnovation in Extract	ion Tech	nology for	Improv	ed Virgin	Olive (Dil		
uality and By-Produ	act Valor	isation						
Servili, S. Esposto, A.	Taticchi, S	Urbani, R. S	Selvaggini	1. Di Maio	and G Vi	eneziani		
S.E.E.A., Sezione di Ter	nologie e	Biotecnologi	c degli Al	menti				
iniversità degli Studi di P la S. Costanzo - 06126 P	crugia							
taly	eraged							
Table 5. Phenolic composi	tion (malk	g) of extra-y	irgin olivi	oils obtair	ed after	malaxation	under dif	ferent initi
anna a' Cana Carra Car		2024						
compositions, source: Set	rvin et al., a							
compositions. Source: Sei	rvin et al., a	Initial Os		are in the ma	laxer char	mber headsea	ce (kPa)	
compositions. source: set	0	Initial O ₂	partial presi 30°	are in the ma	laxer chor 50	mber headspa	cc (kPa) 10	>
componitions, source: Se	0	Initial O ₂	partial pres 30°	are in the ma	laxer chor 50 ola'	mber headspa	ce (kPa) 10)
3.4-DHPEA'	0	Initial O ₂	partial press 30 [°] 0.8	ure in the ma 'Ogliar (0.05)6	laxer char 50 ola' 0.6	mber headspa (0.004)c	cc (kPa) 10 0.8	0 (0.01)d
3,4-DHPEA'	0 1.0 3.1	(0.02)a (0.03)a	oartial press 30° 0.8 3.1	Ogliar (0.05)b (0.7)a	laxer chor 50 ola' 0.6 4.1	(0.004)c (0.001)b	cc (kPa) 10 0.8 4.2	0 (0.01)d (0.03)b
3,4-DHPEA' p-HPEA 3,4-DHPEA-EDA	0 1.0 3.1 247.7	(0.02)a (0.02)a (0.03)a (1.9)a	0.8 3.1 235.2	Ogliar (0.05)b (0.7)a (5.5)b	laxer char 50 ola' 0.6 4.1 117.8	(0.004)c (0.001)b (0.8)c	cc (kPa) 10 0.8 4.2 118.1	(0.01)d (0.03)b (0.03)c
3,4-DHPEA* p-HPEA 3,4-DHPEA-EDA p-HPEA-EDA	0 1.0 3.1 247.7 126.4	(0.02)a (0.02)a (0.03)a (1.9)a (0.4)a	0.8 30 ⁷ 0.8 3.1 235.2 118.6	Ogliar (0.05)b (0.7)a (5.5)b (5.9)b	laxer char 50 01a' 0.6 4.1 117.8 86.3	(0.004)c (0.001)b (0.8)c (0.3)c	cc (kPa) 10 0.8 4.2 118.1 85.4	(0.01)d (0.03)b (0.03)c (0.62)c
3,4-DHPEA ^x p-HPEA 3,4-DHPEA-EDA p-HPEA-EDA (+)-1-Acetoxypincresinol	0 1.0 3.1 247.7 126.4 21.0	(0.02)a (0.02)a (0.03)a (1.9)a (0.4)a (0.4)a	0.8 30 ⁷ 0.8 3.1 235.2 118.6 25.4	Ogliar (0.05)b (0.7)a (5.5)b (5.9)b (1.5)b	laxer char 50 01a* 0.6 4.1 117.8 86.3 22.3	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)ac	cc (kPa) 10 0.8 4.2 118.1 85.4 24.1	(0.01)d (0.03)b (0.03)c (0.62)c (0.09)b
3.4-DHPEA* p-HPEA 3.4-DHPEA*DA p-HPEA-EDA p-HPEA-EDA (*)-1-Acetoxybinecesinol (*)-Pinocesinol	0 1.0 3.1 247.7 126.4 21.0 6.8	(0.02)a (0.02)a (0.03)a (1.9)a (0.4)a (0.4)a (0.4)a	0.8 30° 0.8 3.1 235.2 118.6 25.4 7.6	Ogliar (0.05)b (0.7)a (5.5)b (5.9)b (1.5)b (0.3)b	laxer char 50 014' 0.6 4.1 117.8 86.3 22.3 7.0	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)ac (0.04)a	cc (kPa) 10 0.8 4.2 118.1 85.4 24.1 7.1	(0.01)d (0.03)b (0.03)c (0.62)c (0.09)b (0.03)a
3,4-DHPEA [*] p-HPEA 3,4-DHPEA [*] p-HPEA-EDA p-HPEA-EDA (+)-1-Acetoxypincresinol (+)-Pincresinol 3,4-DHPEA-EA	0 1.0 3.1 247.7 126.4 21.0 6.8 212.2	(0.02)a (0.02)a (0.03)a (1.9)a (0.4)a (0.4)a (0.4)a (0.07)a (0.1)a	0.8 30 ⁷ 0.8 3.1 235.2 118.6 25.4 7.6 186.4	Ogliar (0.05)b (0.7)a (5.5)b (5.5)b (1.5)b (0.3)b (4.8)b	laxer char 50 0.6 4.1 117.8 86.3 22.3 7.0 100.9	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)ac (0.04)a (1.1)c	cc (kPa) 10 0.8 4.2 118.1 85.4 24.1 7.1 98.2	(0.01)d (0.03)b (0.03)c (0.62)c (0.09)b (0.03)a (0.2)c
3,4-DHPEA* p-HPEA 3,4-DHPEA-EDA p-HPEA-EDA (*)-1-Acotexpineresinol 3,4-DHPEA-EA	0 1.0 3.1 247.7 126.4 21.0 6.8 212.2	(0.02)a (0.03)a (0.03)a (1.9)a (0.4)a (0.4)a (0.4)a (0.07)a (0.1)a	0.8 30 ⁷ 0.8 3.1 235.2 118.6 25.4 7.6 186.4	Ogliar (0.05)b (0.7)a (5.5)b (1.5)b (1.5)b (0.3)b (4.8)b 'Corat	llaxer chan 50 ola" 0.6 4.1 117.8 86.3 22.3 7.0 100.9 ma"	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)c (0.04)a (1.1)c	cc (kPa) 10 0.8 4.2 118.1 85.4 24.1 7.1 98.2	(0.01)d (0.03)b (0.03)c (0.62)c (0.09)b (0.03)a (0.2)c
compositions. source: set 3,4-DHPEA* p-HPEA 3,4-DHPEA-EDA 9-HPEA-EDA (*)-1-Acotoxypincresinol (*)-Phronesinol 3,4-DHPEA-EA 3,4-DHPEA-EA	0 1.0 3.1 247.7 126.4 21.0 6.8 212.2 6.8	(0.02)a (0.02)a (0.03)a (1.9)a (0.4)a (0.4)a (0.4)a (0.7)a (0.1)a (0.7)a	0.8 3.0 3.1 235.2 118.6 25.4 7.6 186.4 3.2 3.2	are in the ma 'Ogliar (0.05)b (0.7)a (5.5)b (1.5)	laxer char 50 0.6 4.1 117.8 86.3 22.3 7.0 100.9 ina 4.4	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)ac (0.04)a (1.1)c (0.7)b	ce (kPa) 10 0.8 4.2 118.1 85.4 24.1 7.1 98.2	(0.01)d (0.03)b (0.03)c (0.62)c (0.09)b (0.03)a (0.2)c (0.2)c
CORPORTION. SOURCE SE 3,4-DHPEA' p-IPEA 3,4-DHPEA-EDA p-IPEA-EDA (+)-I-Acotrophicresinol 3,4-DHPEA-EA 3,4-DHPEA-EA 3,4-DHPEA p-IPEA	0 1.0 3.1 247.7 126.4 212.2 6.8 212.2 6.8 10.0	(0.02)a (0.02)a (0.03)a (1.9)a (0.4)a (0.4)a (0.4)a (0.7)a (1.1)a (1.1)a	0.8 30' 0.8 3.1 235.2 118.6 25.4 7.6 186.4 3.2 3.2 3.9	Pare in the ma Oglian (0.05)b (0.7)a (5.5)b (5.9)b (1.5)b (0.3)b (4.8)b (0.8)b (0.5)bc (0.5)bc (0.5)bc (0.5)bc (0.5)bc (0.5)bc (0.5)bc (0.5)b	laxer chor 50 ola* 0.6 4.1 117.8 86.3 22.3 7.0 100.9 ina* 4.4 7.5	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)sc (0.04)a (1.1)c (0.7)b (0.9)b (1.5)c	cc (kPa) 10 0.8 4.2 118.1 85.4 24.1 7.1 98.2 1.4 4.4 4.4	(0.01)d (0.03)b (0.03)c (0.62)c (0.62)c (0.09)b (0.03)a (0.2)c (0.2)c (0.4)c (0.2)c
CORPORTION: SOURCE OF 3,4-DHPEA* p-HPEA 3,4-DHPEA-EDA p-HPEA-EDA (+)-Facetoryphoresinol (+)-Facetoryphoresinol (+)-Facetoryphoresinol 3,4-DHPEA 3,4-DHPEA 3,4-DHPEA 3,4-DHPEA 3,4-DHPEA 3,4-DHPEA 3,4-DHPEA	0 1.0 3.1 247.7 126.4 21.0 6.8 212.2 6.8 10.0 478.9 148.9	(0.02)a (0.02)a (0.03)a (1.9)a (0.4)a (0.4)a (0.4)a (0.7)a (1.1)a (1.62)a (1.1)a	0.8 30 ⁵ 0.8 3.1 235.2 118.6 25.4 7.6 186.4 3.2 5.9 437.7	Ogliar (0.05)b (0.7)a (5.5)b (1.5)b (1.5)b (1.5)b (4.8)b (4.8)b (0.5)bc (14.3)b (0.5)bc (14.3)b	laxer char 50 ola" 0.6 4.1 117.8 86.3 22.3 7.0 100.9 100.9 100.9 4.4 7.8 343.1 343.2	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)ac (0.04)a (1.1)c (0.7)b (0.9)b (11.5)c (1.5)c (1.4)c	cc (kPa) 10 0.8 4.2 118.1 85.4 24.1 7.1 98.2 1.4 4.4 229.9 135.1	(0.01)d (0.03)b (0.03)c (0.62)c (0.09)b (0.03)a (0.2)c (0.2)c (0.4)c (0.4)c (0.2)d (0.2)c
CORPORTION: SOURCE OF 3,4-DHPEA' p-HPEA 3,4-DHPEA-EDA p-HPEA-EDA (+)-Fincersniol 3,4-DHPEA-EA 3,4-DHPEA	0 1.0 3.1 247.7 126.4 21.0 6.8 212.2 6.8 10.0 478.9 144.2 212.2	(0.02)a (0.02)a (0.03)a (0.03)a (0.03)a (0.4)a (0.4)a (0.4)a (0.4)a (0.7)a (0.1)a (0.7)a (1.1)a (1.1)a (1.6)a (1.8)a	0.8 30' 0.8 3.1 235.2 118.6 25.4 7.6 186.4 3.2 3.9 437.7 1353 24.9	arc in the ms Oglian (0.05)b (0.7)a (5.5)b (1.5)b (1.5)b (4.8)b (0.5)b (1.5)b	alaxer chan 50 0la" 0.6 4.1 117.8 86.3 22.3 7.0 100.9 ma" 4.4 7.8 343.1 126.2 20.3 20.3	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)c (0.4)a (1.1)c (1.1)c (1.2)c (1.4)c (1.4)c (0.5)b	cc (kPa) 10 0.8 4.2 118.1 85.4 24.1 7.1 98.2 1.4 4.4 229.9 125.1 27.1	(0.01)d (0.03)b (0.03)c (0.62)c (0.09)b (0.03)a (0.2)c (0.2)c (0.4)c (0.4)c (0.4)c (0.4)c (0.2)d (3.1)c
CORPORTION: SOURCE OF JAPERA' JAPRIPEA-EDA JAPRIPEA-EDA JAPRIPEA-EDA JA-DHIPEA JA-	0 1.0 3.1 247.7 126.4 210.0 6.8 212.2 6.8 10.0 478.9 144.2 30.8 9 144.2 30.8 9 144.2 30.8 144.2	(0.02)a (0.02)a (0.03)a (0.03)a (0.03)a (0.03)a (0.03)a (0.03)a (0.07)a (0.1)a (0.1)a (0.1)a (0.1)a (1.1)a (1.6)2)a (1.6)2(1.6	0.8 30 ⁵ 0.8 3.1 235.2 118.6 25.4 7.6 186.4 3.2 5.9 437.7 135.3 25.8 437.7	are in the ma Oglian (0.05)b (0.7)a (5.5)b (5.5)b (1.5)b	alaxer char 50 0la" 0.6 4.1 117.8 86.3 22.3 7.0 100.9 ina" 4.4 7.8 343.1 126.2 29.2 9.2 9.2	(0.004)c (0.001)b (0.8)c (0.3)c (0.3)ac (0.04)a (1.1)c (0.7)b (1.1)c (1.4)c (1.4)c (1.4)c (0.4)ab	cc (kPa) 10 0.8 4.2 118.1 85.4 24.1 7.1 98.2 1.4 4.4 229.9 125.1 27.1 7.9	(0.01)d (0.03)b (0.03)c (0.02)c (0.09)b (0.03)a (0.2)c (0.2)c (0.2)c (0.2)c (0.2)c (0.2)c (0.2)c (0.2)c (0.3)ab (0.3)ab

	Malaxing
	Visual checks: • There is a large amount of oil floating on top of the paste in the last vat of the malaxer. • The blades of the malaxer come out clean from the paste • The paste shows an evident cracking with a bright dark colour • The paste behaves as a solid, not as a liquid
modern	

•↑↑ **PV**

modern

↓↓ Rancimat® stability

•↑↑ Polyphenols & ortodiphenols

- •↑↑ Bitterness & "harshness" taste feeling
- •"Overcooked" defect
- ${\boldsymbol{\cdot}}{\downarrow}{\downarrow}$ Fruitiness in nose
- •↑↑ Chlorophyls
- - $\uparrow\uparrow$ Trans fatty acids (18:1T).
- - $\uparrow\uparrow$ E+U, Stigmasterol and Total sterols

Legislation

EC definition (n°1513/2001): "Oils obtained from the fruit of the olive tree solely by mechanical or other physical means under conditions that do not lead to alteration in the oil, which have not undergone any treatment other than washing, decantation, centrifugation or filtration, to the exclusion of oils obtained using solvents or using adjuvants having a chemical or biochemical action, or by re-esterification process and any mixture with oils of other kinds'

Article 7: "In order to preserve the natural characteristics of virgin olive oils, the use of oil-extraction adjuvants having a chemical or biochemical action should be excluded"

Ş

Legislation

IOC definition (COI/T.15/NC no.3/Rev.3): "Olive oil is the oil obtained solely from the fruit of the olive tree (Olea europaea L.), to the exclusion of oils obtained using solvents or re-esterification processes and of any mixture with oils of other kinds"

Codex definition (33-1981 (Rev. 2-2003)): "Virgin olive oils are the oils obtained from the fruit of the olive tree solely by mechanical or other physical means under conditions, particularly thermal conditions, that do not lead to alterations in the oil, and which have not undergone any treatment other than washing, decanting, centrifuging and filtration"

Ç

 \checkmark

Legislation

Australian standard (AS 5264-2011): "Olive oil is the oil obtained solely from the fruit of the olive tree (Olea europaea L.), to the exclusion of oils obtained using solvents or reesterification processes and of any mixture with oils of other kinds"

Article 9.3: "Processing aids are allowed to be used during the oil extraction process to the extent allowed by the Australia New Zealand Food Standard Code"

ANZFA (Section 1.3.3: Processing aids): Talc powder, Pectinase enzymes.

	Talc Talc trial in Manzanillo fruit with 61.1% moisture and 3.1 M.I.					
	Talc rate	Processing speed	Extraction efficiency			
	0.0%	2.95 tn/hr	74.36%			
	0.5%	3.45 tn/hr	81.25%			
	1.0%	3.90 tn/hr	86.34%			
	1.5%	4.15 tn/hr	88.35%			
	2.0%	4.15 tn/hr	89.15%			
nodern	2.5%	4.15 tn/hr	88.74%			

Talc

When should I consider the use talc and how much of it?

- With difficult varieties (Arbequina, Leccino, Picual, Hojiblanca, Manzanillo).
- With high moisture levels (>56.0%).
- With small grids (4 or 5 mm).
- With "fleshy" fruit (high pulp/pit ratio).
- \bullet With low extraction efficiencies (< 85.0%).
- \bullet Others (Low pumping capacity <60.0% of decanter capacity).
- Start with 1.0% and adjust according to oil content in pomace and pumping capacity.

Common Salt (NaCl)

- $_{\circ}$ High solubility in water. It does not make the oil "salty"
- o Action: It changes the density of the water stretching out the gap of water:oil densities
- Greener oils as it increases chlorophyll
- solubility

 \checkmark

Ş

- Dose = 1-3%
- Significantly cheaper than talc & microtalc powder

Calcium carbonate

 Natural mineral with crystalline structure (calcite)
 It facilitates flocks agglomeration by adsorption (similar action to Talc powder)

- o d50% = 2.8µm
- $_{\circ}$ Density = 2.7 gr/ml
- Dose = 1-2%

- $_{\circ}$ Cheaper than Talc powder
- Used in Spain with excellent extraction efficiency results

108

Salt & Calcium carbonate Salt (NaCl) Calcium carbonate

Improves extractability

- No impact on taste
- Slightly greener oils
 Higher PPH content in oil and slightly higher stability
- Increases CE of pomace

Ç

 \checkmark

- Aggressive on paste
- Very high extractability Reduces FFA
- Increases pH of pomace
- Oxidative action (PV, UV)
- o ↓↓ PPH, stability &
 - bitterness
 - Very green oils o Changes in taste

Enzymes

- $_{\circ}$ Very effective in improving the paste extractability • Biologically active protein substances that help in degrading the pectin & cellulose of the cell walls & vacuoles
- They are produced from Aspergillus aculeatus or niger
- Same enzymes that the fruit has in its tissues
- Endogenous enzyme system depends on the season,
- variety & maturity and is inactivated by polyphenols
- Dose = Variable (200-500ml/tn). Higher in dry years • Water soluble and easily removed by centrifugation
- Absolutely essential when dealing with low maturity fruit

Enzymes

When should I use enzymes and how much of it?

- With difficult varieties (Arbequina, Leccino, Picual, Hojiblanca, Manzanillo).
- With green fruit (MI <3.5)
- With large grids (6 or 7 mm).
- With low extraction efficiencies (< 85.0%).
- Others (Low pumping capacity <60.0% of decanter capacity).
- \bullet Start with 0.2% and adjust according to oil content in pomace and pumping capacity.

$\mathbf{\mathbf{x}}$

 Very good results in Arbequina & Barnea. It was not a solution for high moisture Manzanilla without talc powder

- No alteration of oil quality for better or worse
- No changes in taste and colour

 \checkmark

 \checkmark

- $_{\circ}$ No clear impact on fermentation parameters: FFA, DAG
- $_{\circ}$ No significant impact on oxidative parameters: PV, UV, PPH & Rancimat

 $_{\circ}$ It seems that the relative content of "smooth" and "hairy" regions in the fruit cell walls each year is different and that determines which composition will be more effective

Warm water dipping

 It consists of pre-heating olives before crushing to achieve a higher temperature at beginning of malaxing

 $_{\circ}$ Technique: Immersion of olives for 3 minutes in warm water at 30-45-60°C

 $_{\circ}$ Research works in Spain indicate that dipping:

- Increases paste extractability
- 2. Reduces bitterness
- 3. Inhibits LOX enzyme \rightarrow Delays oil oxidation
- 4. Increases chlorophyll content \rightarrow Greener oils
- No changes in taste

- $_{\circ}$ There is a clear reduction of the bitterness
- There is a reduction of the oxidative stability

Ç

Summary

 $_{\circ}$ Talc & microtalc powder: essential with difficult pastes or high moisture fruit. No impact on oil quality

 Common salt: Low cost option. No impact on oil quality, though there is a significant increase in conductivity of pomace

• **Calcium carbonate**: another cheap option. High paste extractability. Increases pH of pomace and could impact quality if not properly used

 Enzymes: Effective under most conditions. Doses depend on the year and fruit ripeness. No impact on oil quality
 Warm dipping: Difficult to implement. Only effective with temperatures above 60°C. It does change the oil quality

• **Ultrasound**: Promising technology. No impact on quality

 $_{\circ}$ Microtalc powder & enzymes could be an interesting combination depending on the fruit condition

 \checkmark

2 & 3 phases			
	3 phases	2 phases	
Pomace (kg/kg of olives processed)	0.5	0.8	
Pomace moisture	45-55%	55-75%	
Waste water (Its/kg of olives processed)	1.25 lt/kg	0.25 lt/kg	
Polyphenols (ppm)	10,000	2,500	
COD (ppm)	80,000	10,000	

Two-phase system

- Reduced production of waste water with low contaminant power •
- Water saving Lower investment (just 1
- CV)

modern

- Energy saving (no need to heat up injected water to the decanter)
 Oil quality

	Centrifugation					
	Oil in water:					
		Ideal: Unacceptable:	< 0.1% > 0.3%			
	Water in oil:	Ideal: Unacceptable:	< 0.2% > 0.6%			
	Water tempera	ture:	1 20C (2 40E) bisher than			
		Unacceptable:	Lower than malaxing T ^o 5°C (9°F) higher than malaxing T ^o			
modern						

Centrifugation

• $\uparrow\uparrow$ **PV** if water of addition to the separator is too hot. It should not exceed 32-35°C (90-95°F).

- Polyphenols losses due to $\uparrow\uparrow$ T°C and excess of water of addition

 Fruitiness intensity is affected, and "burnt" defect in oil.

• Water ring in separator too small: moisture and impurities.

Ŷ

	Centrifugation							
	Parameter	Oil at Separator outlet						
		decanter	Water/oil 1:1		Water/oil 1.5:1		1	
	PPH (ppm)	605	495	463	444	434	422	411
	К225	0.38	0.31	0.30	0.29	0.30	0.28	0.26
	Rancimat (hr)	23.1	21.2	21.7	19.1	18.5	18.8	17.3
modern								

	Extraction efficiency					
	Very good efficiency: Benchmark efficiency: Unacceptable:	>90.0% >85.0% <70.0%				
modern						

 Methodology "micro": It helps us detecting changes in extractability depending on the adjustment of the processing equipment. It measures efficiency up to the decanter.

I.E.=1-(% Oil in pomace*(100-%oil in fruit))/(% Oil in fruit*(100-% Oil in pomace))

Ç

 \checkmark

Or a reference,

< 8.0% oil/dry matter

With 50% fruit moisture = 3.0% oil/fresh matter

With 60% fruit moisture = 2.0% oil/fresh matter

Extraction efficiency

 Methodology "macro": It determines the efficiency of the plant as a complete unit. It should be measured weekly.

% Oil in fruit = 19.2% % Moisture in fruit = 55.5% Clean net weight of the batch = 7835 kg/17273 lbs Volume of oil obtained = 1445 litres/382 gallons Oil density = 0.915 gr/cm3

Day 4

SEPTEMBER 20 - 23, 2016

Master Milling

• Provides a good indication of the fruit condition before crushing it, the time between harvesting and crushing and the storage conditions of the oil (sediments). • **Extra virgin olive oils must have a free acidity level under 0.8%**. Nonetheless, it is expected that sound fruit processed immediately should produce oil with less than 0.35% FFA.

Evolution of quality parameters at 201C Dark Glass														
Date	FFA	PV	K232	K270	DK	IND	PPH	K225	PPPs	DAGs	DEF	FRU	BIT	PUN
Aug-09	0.19	6.24	1.600	0.073	-0.001	5.7	155	0.09	1.79	85.59	0	5	3	4
Dec-09	0.17	8.97	1.760	0.128	0.000	4.9	165	0.10	5.99	79.16	0	5	3	5
Apr-10	0.18	9.84	1.957	0.138	0.001	4.8	126	0.13	7.18	69.97	0	5	2	
Aug-10	0.20	9.81	1.926	0.175	0.002	4.1	122	0.13	8.00	64.04	0	5	2	
Dec-10	0.21	10.97	1.876	0.186	0.003	4,4	140	0.12	10.47	59.17	0	5	3	3
Apr-11	0.24	10.44	1.850	0.190	0.005	4.2	133	0.12	13.59	51.03	0	4	2	
Evolution of quality parameters at 20PC Clear Glass														
Date	FFA	PV	K232	K270	DK	IND	PPH	K225	PPPs	DAGs	DEF	FRU	BIT	PUN
Aug-09	0.19	6.24	1.600	0.073	-0.001	5.7	155	0.09	1.79	85.59	0	5	3	4
Dec-09	0.17	10.16	1.810	0.146	0.002	4.2	159	0.14	5.41	76.84	0	5	2	3
Apr-10	0.18	15.48	2.187	0.165	0.002	4.2	123	0.12	11.86	69.82	0	4	2	3
Aug-10	0.21	9.31	1.945	0.212	0.005	3.9	127	0.11	18.95	64.57	0	5	2	2
Dec-10	0.22	14.02	1.924	0.230	0.006	3.6	129	0.10	25.23	\$9.66	0	4	2	
Apr-11	0.24	10.93	1.915	0.222	0.003	3.6	127	0.12	27.32	48.08	1	3	2	1
Evolution of														
Date	Quality paral	PV	K232	K270	DK	IND	PPH	K225	PPPs	DAGs	DEF	FRU	вт	PUN
Date Aug-09	FFA 0.19	PV 6.24	K232	K270 0.073	DK -0.001	IND 5.7	PPH 155	K225	PPPs	DAGs 85.59	DEF	FRU	BIT 3	PUN
Date Aug-09 Dec-09	FFA 0.19 0.17	PV 6.24 6.17	K232 1.600 1.889	K270 0.073 0.111	DK -0.001 0.000	IND 5.7 3.9	РРН 155 188	K225 0.09 0.14	PPPs 1.79 3.88	DAGs 85.59 77.23	DEF	FRU S	віт 3 3	PUN
Date Aug-09 Dec-09 Apr-10	FFA 0.19 0.17 0.17	PV 6.24 6.17 12.78	0*C Dark Pk K232 1.600 1.889 1.953	K270 0.073 0.111 0.172	-0.001 0.000 0.003	IND 5.7 3.9 4.1	PPH 155 188 131	K225 0.09 0.14 0.14	PPPs 1.79 3.88 6.41	DAGs 85.59 77.23 68.27	DEF 0 0	FRU 5 5 5	BIT 3 3 2	PUN
Date Aug-09 Dec-09 Apr-10 Aug-10	0.19 0.17 0.17 0.19	6.24 6.17 12.78 11.65	0°C Dark Pk K232 1.600 1.889 1.953 2.089	K270 0.073 0.111 0.172 0.158	DK -0.001 0.000 0.003 0.001	IND 5.7 8.9 4.1 3.7	PPH 155 188 131 138	K225 0.09 0.14 0.14 0.13	PPPs 1.79 3.88 6.41 7.63	DAGs 85.59 77.23 68.27 62.29	DEF 0 0 0	FRU 5 5 5 4	BIT 3 3 2 2	PUN
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10	FFA 0.19 0.17 0.17 0.19 0.21	6.24 6.17 12.78 11.65 15.40	0°C Dark Pk K232 1.600 1.889 1.953 2.089 2.216	κ270 0.073 0.111 0.172 0.158 0.177	DK -0.001 0.000 0.003 0.001 0.003	IND 5.7 3.9 4.1 3.7 3.1	PPH 155 188 131 138 139	K225 0.09 0.14 0.14 0.13 0.11	PPPs 1.79 3.88 6.41 7.63 10.08	DAGs 85.59 77.23 68.27 62.29 56.16	DEF 0 0 0 0	FRU 5 5 5 4 5	BIT 3 2 2 2	PUN
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10 Apr-11	FFA 0.19 0.17 0.17 0.19 0.21 0.22	PV 6.24 6.17 12.78 11.65 15.40 14.74	0*C Dark Pl K232 1.600 1.889 1.953 2.089 2.216 2.087	K270 0.073 0.111 0.172 0.158 0.177 0.158	DK -0.001 0.000 0.003 0.001 0.003 0.003	IND 5.7 3.9 4.1 3.7 3.1 3.2	PPH 155 188 131 138 139 139	K225 0.09 0.14 0.14 0.13 0.11 0.13	ppps 1.79 3.88 6.41 7.63 10.08 12.90	DAGs 85.59 77.23 68.27 62.29 56.16 49.61	DEF 0 0 0 0 0	FRU 5 5 5 4 5 4	BIT 3 2 2 2 2 2	PUN
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10 Apr-11 Evolution of	FFA 0.19 0.17 0.17 0.19 0.21 0.22 quality parat	PV 6.24 6.17 12.78 11.65 15.40 14.74 meters at 3	K232 1.600 1.889 1.953 2.089 2.216 2.087 0°C Dark Gi	K270 0.073 0.111 0.172 0.158 0.177 0.158	DK -0.001 0.003 0.003 0.003 0.003	IND 5.7 3.9 4.1 3.7 3.1 3.2	PPH 155 188 131 138 139 139	K225 0.09 0.14 0.14 0.13 0.11 0.13	ppps 1.79 3.88 6.41 7.63 10.08 12.90	DAGs 85.59 77.23 68.27 62.29 56.16 49.61	DEF 0 0 0 0	FRU 5 5 5 4 5 4	BIT 3 2 2 2 2 2	PUN 4
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10 Apr-11 Evolution of Date	FFA 0.19 0.17 0.17 0.21 0.22 quality parat	PV 6.24 6.17 12.78 11.65 15.40 14.74 meters at 3 PV	0°C Dark Pk K232 1.600 1.889 1.953 2.089 2.216 2.087 0°C Dark Gl K232	K270 0.073 0.111 0.172 0.158 0.177 0.158 855 K270	DK -0.001 0.003 0.001 0.003 0.003 0.003	IND 5.7 3.9 4.1 3.7 3.1 3.2 IND	PPH 155 188 131 138 139 139	K225 0.09 0.14 0.14 0.13 0.11 0.13 K225	PPPs 1.79 3.88 6.41 7.63 10.08 12.90 PPPs	DAGs 85.59 77.23 68.27 62.29 56.16 49.61 DAGs	DEF 0 0 0 0 0 0 0	FRU 5 5 4 5 4	BIT 3 3 2 2 2 2 2 8	PUN 4 3 2 2 2 2
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10 Apr-11 Evolution of Date Aug-09	FFA 0.19 0.17 0.17 0.19 0.21 0.22 quality parate FFA 0.19	PV 6.24 6.17 12.78 11.65 15.40 14.74 meters at 3 PV 6.24	0*C Dark Pl <u>K232</u> 1.600 1.889 1.953 2.089 2.216 2.087 0*C Dark Gl <u>K232</u> 1.600	x270 0.073 0.111 0.172 0.158 0.177 0.158 x55 x270 0.073	DK -0.001 0.003 0.003 0.003 0.003 0.003 DK -0.001	IND 5.7 3.9 4.1 3.7 3.1 3.2 IND 5.7	ррн 155 188 131 138 139 139 139 139	K225 0.09 0.14 0.14 0.13 0.11 0.13 K225 0.09	PPPs 1.79 3.88 6.41 7.63 10.08 12.90 PPPs 1.79	DAGs 85.59 77.23 68.27 62.29 56.16 49.61 DAGs 85.59	DEF 0 0 0 0 0 0 0 0 0 0 0 0	FRU 5 5 4 5 4 5 4 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	BIT 3 2 2 2 2 2 2 8IT 3	PUN 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10 Apr-11 Evolution of Date Aug-09 Dec-09	FFA 0.19 0.17 0.17 0.21 0.22 quality parar FFA 0.19 0.27	PV 6.24 6.17 12.78 11.65 15.40 14.74 meters at 3 PV 6.24 6.06	0°C Dark Pk <u>K232</u> 1.600 1.889 1.953 2.089 2.216 2.087 0°C Dark Gl <u>K232</u> 1.600 2.103	x270 0.073 0.111 0.172 0.158 0.177 0.158 x270 0.073 0.114	DK -0.001 0.003 0.003 0.003 0.003 0.003 DK -0.001 -0.001	IND 5.7 3.9 4.1 3.7 3.1 3.2 IND 5.7 4.4	ррн 155 188 131 138 139 139 139 139 139	K225 0.09 0.14 0.14 0.13 0.11 0.13 K225 0.09 0.14	PPPs 1.79 3.88 6.41 7.63 10.08 12.90 PPPs 1.79 1.79 10.11	DAGs 85,59 77,23 68,27 62,29 56,16 49,61 DAGs 85,59 67,40	DEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FRU 5 5 4 5 4 5 4 5 7 8 7 8 5 5	BIT 3 2 2 2 2 2 2 8 8 8 8 8 3 3 3	PUN 4 3 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10 Apr-11 Evolution of Date Aug-09 Dec-10 Apr-11	FFA 0.19 0.17 0.19 0.21 0.22 quality parate FFA 0.19 0.21 0.22 quality parate 0.19 0.21 0.22 Quality parate 0.19 0.17 0.20	PV 6.24 6.17 12.78 11.65 15.40 14.74 meters at 3 PV 6.24 6.26 13.88	0°C Dark Pk K232 1.600 1.889 1.953 2.089 2.216 2.087 0°C Dark Gl K232 1.600 2.103 2.103	x270 0.073 0.111 0.172 0.158 0.177 0.158 x270 0.073 0.114 0.147	DK -0.001 0.003 0.003 0.003 0.003 0.003 DK -0.001 -0.001 0.001	IND 5.7 3.9 4.1 3.7 3.1 3.2 IND 5.7 4.4 3.9	ррн 155 188 131 139 139 139 139 139 139	к225 0.09 0.14 0.13 0.13 0.13 0.13 к225 0.09 0.13	PPPs 1.79 3.88 6.41 7.63 10.08 12.90 PPPs 1.79 10.11 24.10	DAGs 85.59 77.23 68.27 62.29 56.16 49.61 DAGs 85.59 67.40 48.14	DEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FRU 5 5 4 4 4 4 5 5 5 5	BIT 3 2 2 2 2 2 2 8 8 7 8 7 8 7 8 7 8 7 2 2 2 2 2 2 2 2 2 2 2 2 2	PUN 4 3 3 1 2 9 1 2 3 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10 Apr-11	FFA 0.19 0.17 0.17 0.19 0.21 0.22 0.22 quality parate FFA 0.19 0.21 0.22 0.17 0.23 0.19 0.19 0.21 0.22 0.19 0.19 0.21 0.20 0.19 0.17 0.20 0.25 0.25	PV 6.24 6.17 12.78 11.65 15.40 14.74 neters at 3 PV 6.24 6.06 13.88 11.26	0°C Dark Pk K232 1.600 1.839 1.953 2.089 2.216 2.087 0°C Dark Gl K232 1.600 2.103 2.103 3.497	x270 0.073 0.111 0.172 0.158 0.177 0.158 x55 x270 0.073 0.114 0.147 0.159	DK -0.001 0.003 0.003 0.003 0.003 0.003 DK -0.001 -0.001 0.001 0.001 0.001	IND 5.7 3.9 4.1 3.7 3.1 3.2 IND 5.7 4.4 3.9 2.8	РРН 155 188 131 138 139 139 139 139 139 139 139 139 9РН	K225 0.09 0.14 0.13 0.13 0.13 0.13 K225 0.09 0.14 0.13 0.13	PPPs 1.79 3.88 6.41 7.63 10.08 12.90 PPPs 1.79 10.11 24.10 43.84	DAGs 85.59 77.23 68.27 62.29 56.16 49.51 DAGs 85.59 67.40 48.14 38.14	DEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FRU 5 5 4 5 4 5 4 5 5 5 5 5 5 5 5	BIT 3 2 2 2 2 2 2 2 2 2 2 2 2 2	PUN 4 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Date Aug-09 Dec-09 Apr-10 Aug-10 Dec-10 Apr-11 Evolution of Date Aug-09 Dec-09 Apr-10 Date Aug-09 Dec-09 Apr-10 Dug-10	FFA 0.19 0.17 0.17 0.19 0.21 0.22 0.22 quality parameters 0.19 0.19 0.21 0.20 0.21 0.21 0.22 0.19 0.17 0.20 0.17 0.20 0.25	PV 6.24 6.17 12.78 11.65 15.40 14.74 neters at 3 PV 6.24 6.06 13.88 11.25 15.40 14.74	0°C Dark Pk K232 1.600 1.889 1.953 2.089 2.216 2.087 0°C Dark Gl K232 1.600 2.103 2.103 3.497 3.412	x270 0.073 0.111 0.172 0.158 0.177 0.158 x270 0.073 0.114 0.147 0.199 0.286	DK -0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 -0.001 -0.001 0.001 0.002 0.006	IND 5.7 8.9 4.1 8.7 3.1 8.2 IND 5.7 4.4 3.9 2.8 2.6	РРН 155 188 131 139 139 139 139 139 139 139 139 139	K225 0.09 0.14 0.14 0.13 0.11 0.13 K225 0.09 0.14 0.13 0.10 0.10	PPPs 1.79 3.88 6.41 7.63 10.08 12.90 PPPs 1.79 10.11 24.10 43.34 84.35	DAGs 85.59 77.23 68.27 62.29 56.16 49.61 DAGs 85.59 67.40 48.14 30.35	DEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	FRU 5 5 5 4 5 4 5 5 5 5 5 5 5 5 4	BIT 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	PUN 4 3 2 2 2 9 9 9 9 9 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Date Aug-09 Dec-09 Apr-10 Aug-09 Dec-10 Apr-11 Evolution of Date Aug-09 Dec-09 Apr-10 Apr-10 Dec-09 Apr-10 Apr-11	FFA 0.19 0.17 0.17 0.19 0.21 0.22 0.21 0.21 0.22 guality parameters 0.19 0.17 0.20 0.17 0.19 0.19 0.17 0.20 0.19 0.30 0.36	PV 6.24 6.17 12.78 11.65 15.40 14.74 meters at 3 PV 6.24 6.06 13.88 11.25 15.40 14.74 15.40 14.74 14.74 14.74 15.75 15.40 15.88 11.55 15.74 15.75	0°C Dark Pk K232 1.600 1.893 2.089 2.216 2.087 0°C Dark Gk K232 1.600 2.103 2.103 2.108 3.497 3.412 3.384	x270 0.073 0.111 0.122 0.158 0.177 0.158 x270 0.073 0.114 0.147 0.199 0.286 0.280	DK -0.001 0.003 0.003 0.003 0.003 0.003 DK -0.001 -0.001 0.001 0.001 0.001 0.005 0.006 0.004	IND 5.7 3.9 4.1 3.7 3.1 3.2 IND 5.7 4.4 3.9 2.8 2.6 2.8	РРН 155 188 131 139 139 139 139 139 139 139 139 139	K225 0.09 0.14 0.13 0.11 0.13 0.13 0.14 0.13 0.11 0.13 0.11 0.13 0.14 0.15 0.09 0.14 0.15 0.10	PPPs 1.79 3.88 6.41 7.63 10.08 12.90 PPPs 1.79 10.11 24.10 43.34 84.35 90.80	DAGs 85,59 77,23 62,29 56,16 49,61 DAGs 85,59 67,40 48,14 30,33 30,75	DEF 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3	FRU 5 5 4 5 4 5 5 5 5 5 5 3 3	BIT 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	PUN 4 4 5 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

Dete FIA P/ EX32 6278 D/K IMO P/H EX35 P/FR D/AS D/F F/HU 0xer-00 0.15 5.16 1.68 0.097 -0.001 3 187 0.01 5.47 0.001 5.01 1.64 0.001 0.01 5.47 0.02 1.01 1.04 0.001 5.7 0.20 1.21 5.08 0.0 0.44 0.01 5.6 1.57 1.07 6.64 7.03 0.44 0.01 5.0 1.01 0.12 0.01 0.01 5.01 0.51 0.57 0.14 7.61 0.14 0.01 0.01 5.1 5.7 0.14 7.61 0.14 0.01	UZ30 DC IND PPH K125 PPH DAGs DGF FAU BT PU 0.017 -0.01 -6.4 9.00 -6 3 1 0.123 -0.01 5.4 9.00 -6 3 1 0.123 -0.001 5.5 1.57 1.64 9.00 0 5 3 2 0.144 0.001 5.6 1.57 0.71 7.64 7.711 0 5 3 2 0.146 0.001 5.1 1.57 0.13 7.83 7.23.8 0 5 3 2 0.146 0.001 5.1 1.57 0.13 7.83 7.23.8 0 5 3 3 0.200 0.004 8.154 0.14 1.322 53.53 0 4 3
Auge 0 0.16 5.16 1.48 0.097 0.001 6.3 187 0.10 1.44 90.00 0 0000 0.15 3.44 1.011 3.001 3.001 3.001 3.001 3.001 0.011 3.001 0.011 3.001 0.011 3.001 0.011 3.001 0.001 0.011 3.001 0.001 0.011 3.001 0.001 0.011 3.001 0.001 0.011 3.001 0.001 0.001 0.001 0.001 3.001 0.001	3 0.087 -0.001 6.3 187 0.10 1.44 90.80 0 6 3 1 0.135 -0.00 5.7 202 0.120 5.50 8500 0 5 3 2 0.144 0.001 5.6 157 0.17 664 78.31 0 5 3 2 0.144 0.002 5.3 155 0.14 7.62 72.35 0 5 3 2 0.146 0.002 5.3 155 0.14 7.62 72.35 0 5 3 2 0.146 0.002 5.3 155 0.14 7.62 72.35 0 5 3 2 0.164 0.004 4.8 154 0.14 1.8.32 55.33 0 4 3
Decceip 0.13 8.44 0.113 0.001 5.7 0.02 0.12 5.30 85.00 0 Map20 0.18 8.40 1.081 0.114 0.001 5.7 1.02 0.12 5.30 #5.00 0 Map20 0.18 8.39 1.014 0.014 5.6 1.57 0.11 7.64 7.51 0 Map20 0.18 8.39 1.741 0.148 0.001 5.1 1.57 0.14 7.64 7.53 0 Map10 0.19 8.16 1.703 0.200 0.004 4.8 1.54 0.14 1.312 55.5.3 0 addsin of quality parameters at 20FC DeX Glass for lower quality call (FA - 0.200) Dext FAA 0.025 PM A2.0 PM A2.15 PM 0.066 0.07 FMU Map26 2.25 6.44 1.168 0.112 0.44 7.32 0.0 Map26 2.25 6.44 1.049 0.11	1 0.113 -0.001 5.7 202 0.12 5.80 85.00 0 5 3 0 0.144 0.001 5.5 2.12 6.45 7.13 0 5 3 2 0.166 0.003 5.1 1.57 0.13 9.88 70.36 0 5 3 3 0.200 0.004 4.8 1.54 0.14 1.8.32 55.53 0 4 3
dep:10 0.14 8.00 1.642 0.144 0.001 5.6 157 0.17 6.64 78.1 0 Mex10 0.14 8.00 1.64 0.001 5.6 157 0.17 6.64 78.1 0 Mex10 0.14 8.02 1.146 0.001 5.6 157 0.17 6.64 78.1 0 Aer.11 0.19 8.16 2.11 6.16 0.001 5.6 157 0.17 6.64 78.1 0 Aer.11 0.19 8.16 1.000 0.004 4.8 1.54 0.14 1.332 55.53 0 obtion of quality parameters at 1.0HC Dek Glass for lower quityes dh (FA > 0.301) 0.00 P14 P4 P4.23 P7 D40.6 D47 F14.1 Dev:0 2.05 2.05 2.00 7.8 2.01 2.14 P34 P6 P14.20 0 Dev:0 2.05 2.05 2.01 2.02 2.	Q 0.148 0.001 5.6 157 0.17 664 7.831 0 5 3 1 0.174 0.002 5.3 155 0.14 7.02 72.83 0 5 3 2 0.166 0.003 5.1 157 0.13 9.83 70.36 0 5 3 2 0.166 0.003 5.1 157 0.13 9.83 70.36 0 5 3 2 0.164 0.004 4.8 154 0.14 13.32 55.33 0 4 3
Up:01 0.16 8.28 1.741 0.174 0.002 5.3 155 0.14 7.42 7.253 0 0 1.027 1.684 1.016 0.002 5.3 1.55 0.14 7.42 7.253 0 0m-11 0.157 1.627 1.684 1.016 0.003 1.157 0.16 1.023 55.35 0 section of could parameters at 2020-0200 0.004 4.8 1.54 0.14 1.322 55.35 0 solution of could parameters at 2020-0200 0.004 4.8 1.54 0.14 1.322 55.35 0 solution of could parameters at 2020-0200 0.004 4.8 1.54 0.14 1.322 55.35 0 solution of could parameters at 2020-0200 0.004 4.8 1.54 0.016 0.00 0.01 1.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	1 0.174 0.002 5.3 155 0.14 7.62 7.258 0 5 3 2 0.166 0.003 5.1 157 0.13 9.83 70.36 0 5 3 3 0.200 0.004 4.8 154 0.14 13.32 55.53 0 4 3
Dec:10 0.17 10.27 1682 0.166 0.003 5.1 157 0.13 9.83 70.56 0 6y-11 0.19 9.16 1.700 0.200 0.004 4.8 1.54 0.11 1.832 55.53 0 6y-01 of guality parameters at 20% Cark Koss for lower quality olk (FA > 0.20%) Dec FFA PM FA2.2 55.53 0 Bucht on diquality parameters at 20% Cark Koss for lower quality olk (FA > 0.20%) Dec FFA PM FA2.2 PM PMO PM FA2.3 PMO DEF FFA DEF DEF DEF DEF DEF DEF DEF DEF DEF DE	2 0.166 0.003 5.1 157 0.13 9.83 70.56 0 5 3 0.000 0.004 4.8 154 0.14 13.52 55.53 0 4 3
Application State	3 0.200 0.004 4.8 154 0.14 13.32 55.53 0 4 3
shufsin of quality parameters at 2010 Clask Siles for lower quality shi (FA > 6.200) Date IAA V X12 X70 EX NO PPH K125 PPP DAG, DEF 100 Siles O Date IAA V X10 V	dia dia kaominina dia kaomi
Date FFA FV K232 K270 DK IND PPH K225 PPPs DAGs DEF FRU Aug-09 0.29 6.64 1.689 0.112 -0.002 7.3 301 0.12 -2.48 79.24 0 Dec-09 0.26 9.54 1.837 0.158 0.000 6.8 2.68 0.16 5.24 68.52 0	Glass for lower quality oils (HA > 0.20%)
Hugeds 0.25 0.64 1.685 0.112 0.002 7.5 501 0.12 2.45 75.24 0 Dec-09 0.26 9.54 1.837 0.158 0.000 6.8 268 0.16 5.24 68.52 0	K270 DK IND PPH K225 PPPs DAGs DEF FRU BIT PI
0.00 0.	7 0.112 10.002 7.5 501 0.12 2.46 75.24 0 5 5
14-10 0.37 13.31 1.007 0.104 0.003 6.6 355 0.34 6.05 57.97 0	
Der 10 0.32 12.61 1960 0.228 0.005 61 238 0.17 10.98 45.86 0	E 0.207 0.002 E3 253 0.10 9.76 49.70 1 E 3
ar-11 0.35 10.14 1.932 0.236 0.006 6.0 242 0.19 14.55 38.44 1	6 0.207 0.002 6.3 253 0.19 8.76 49.79 1 5 3 0 0.228 0.005 6.1 233 0.17 10.98 45.86 0 5 3
	6 0.207 0.002 6.3 253 0.19 8.76 49.79 1 5 3 0 0.228 0.005 6.1 233 0.17 10.98 45.86 0 5 3 2 0.236 0.005 6.0 242 0.19 14.55 38.44 1 4 3
	6 0.207 0.002 6.3 233 0.19 8.76 49.79 1 5 3 0 0.228 0.005 6.1 233 0.17 10.98 45.86 0 5 3 2 0.236 0.006 6.0 242 0.19 14.55 38.44 1 4 3

Plant cleaning & maintenance

Floors: Neutral detergents (no foam)

Equipment (during season): pressurized hot water

Equipment (end of season): Caustic soda based products, specific products for separators

Tanks: Caustic soda & citric acid

modern

Cleaning and maintenance program

 \cdot Cleaning of the processing plant immediately after the season ends

- \cdot Start from receival area and follow the path of the olive fruit through the equipment
- \cdot All conveyor belts to be dismantled. Check condition of belt rollers
- \cdot Remove crusher grids and replace old hammers for new ones

 Pull apart piston pumps and monopumps. Remove olive pit and pomace deposits. Check piston seals and stators condition

 \checkmark

 \checkmark

Plant cleaning & maintenance

 \cdot Thoroughly wash decanter with water 2-3 times. Check bearings condition.

- Pump caustic soda/water through all paste and oil piping.
- \cdot Clean separator with caustic soda and remove inside drum. Clean separator plates.
- \cdot Ensure all full tanks are properly labelled. Clean with caustic soda all empty tanks
- Clean outside areas to minimise the impact of rodents.
 Ensure all electrical panels/cabinets are properly sealed
- to avoid the action of rodents
- \cdot Remove talc powder left over from inside talc powder dispensers. Do the same with enzyme dosing machines

CIP Tank cleaning sequence

- \cdot Hose down bottom of tank to remove mud
- Caustic soda [2%] 15 minutes
 Fresh water 10 minutes
- · Citric acid [2%] 15 minutes

modern

- Fresh water 10 minutes
- \cdot Check pH of water on walls of tank
- \cdot Re-cycle fresh water if pH is <6
- \cdot Open valves and main door of tank to let dry overnight
- Before putting any oil ensure tank is dry and valves & doors are closed
- Assess the condition of the caustic soda solution to see if it can be re-used

Why blending is necessary?

- To improve the overall taste profile of the blended oils (Balance).
- To meet customer requirements.
- To lift one dimensional or particularly flat oils.
- To maintain consistency from year to year and within a year.
- To win medals (Marketing).

Ç

 \checkmark

Ş

• To meet legal chemical parameters.

What to do before blending?

• Obtain as much background information about the oils to be used as possible (Variety, location, processing method, storage conditions, etc.).

• Use laboratory tests (FFA, Peroxides, Polyphenols,

Bitterness, Shelf Life, fatty acid profile and sterols if out of limit values are suspected).

- Ideally wait between 5 and 7 weeks before blending.
- Have a clear idea of what you want to achieve.

What to do while blending?

• Taste all the available oils several times.

- Write detailed notes about them highlighting the most distinctive characteristics of each oil.
- Compare strengths and weaknesses of each oil.
- Rank them according to intensities.
- BLEND.

• At the completion of each blend review the final product, keep notes and samples of each blend attempt.

Are you happy with the blend?

- It is far easier to reduce the quality of a good oil by blending than it is to increase the quality of a poor oil.
- Excellent oils are blended from very good oils.
- Only small inadequacies can be improved by blending.
 Blending can not mask a fermentative fault (Fusty, musty, muddy, etc.).
- Some oils have no place in a blend.
- Remember that dirty mouth feeling will increase with age.
- Bitterness is not easy to mask.
- Strong dominant varieties (Picual) will dominate the profile
- of a blend if added in more than 30%.

modern

	Economic analysis Direct processing costs (US\$/Ton)							
	Facility size	Fruit processed per year (Ton)	Direct costs (US\$/Ton)					
	Large	> 15,000 Ton	30 - 65					
	Medium	3,000 – 5,000 Ton	95 - 130					
	Small	200 – 300 Ton	180 - 230					
modern								

Economic analysis Comparison between a poorly managed operation and two well managed operations focused on costs or quality (20 tons/day operation or approximatel 200 acres)						
	Fruit Oil Content	Extraction Efficiency	Gallons/ton	Cost (\$/gallon)	%	
Poor Management Standards	15%	75%	27.2	\$5.51	62%	
High Quality Focus	18%	85%	37.0	\$4.05	19%	
Low Cost Focus	20%	91%	44.0	\$3.41	0%	
modern olives						

Useful Conversions

WEIGHT

- 1 Short Ton = 2,000 Lbs
- 1 Metric Ton = 2,205 Lbs
- 1 Lb = 0.45 Kg
- 1 Kg = 2.20 Lbs
- 1 Gallon of Olive Oil weighs 7.6 Lbs or 3.45 Kg on average (depending on temperature)

VOLUME

In the U.S., professionals in the olive oil business often refer to bottle size the same way the Europeans do, using metric numbers, with the exception of gallons. For instance, a producer may talk about gallon bottles and 375ml bottles in the same sentence.

BASIC CONVERSIONS

- 1 U.S. Gallon = 3.785 Liters = 128 Fl. Oz.
- 1 Liter = 1,000 ml = 33.8 Fl. Oz.

The most common sizes for olive oil bottles are:

200 ml = 0.2 Liters = 6.8 Fl. Oz. 375 ml = 0.375 Liters = 12.7 Fl. Oz. 500 ml = 0.5 Liters = 16.9 Fl. Oz. 750 ml = 0.750 Liters = 25.4 Fl. Oz.

Number of Bottles per Gallon One gallon of olive oil will give you:

3.8 x 1 Liter/33.8 Fl. Oz. bottles 5 x 750 ml/25.4 Fl. Oz. bottles 7.6 x 500 ml/16.9 Fl. Oz. bottles 10.0 x 375ml/12.7 Fl. Oz. bottles (almost exactly) 15.14 x 250ml/8.5 Fl. Oz. bottles 18.9 x 200ml/6.8 Fl. Oz. bottles (almost 19)

OLIVE OIL YIELD

The olive oil yield refers to the volume of oil per weight of olives. In the U.S. it is generally expressed either in Gallons / Ton (Volume of Oil in Gallons per Weight of Olives in Short Tons) or in % (Weight of Oil in Lbs divided by Weight of Olives in Lbs, or Weight of Oil in Kgs divided by Weight of Olives in Kgs). Use the following formulas to convert from one to the other:

Yield in % = Number of Gallons * 7.6 / 20 Yield in Gallons/Ton = Yield in % * 20 / 7.6

For example, 10 Gallons / Ton = 3.8%. A 10% yield is equivalent to 26 Gallons / Ton.

LENGTH

- 1 Mile = 1.61 Km
- 1 Km = 0.62 Miles
- 1 Meter = 3.28 Feet
- 1 Foot = 0.35 meters
- 1 Inch = 25.4mm = 2.54cm = 0.0254 meters

AREA

- 1 Acre = 0.40 Hectares
- 1 Hectare = 2.47 Acres

TEMPERATURE

The formulas to convert Fahrenheit degrees into Celsius degrees and vice-versa are:

Temperature in °F = (Temperature in °C / 5 * 9) + 32 Temperature in °C = (Temperature in °F - 32) / 9 * 5

For instance 27 °C = 80.6 °F (temperature used in definition of extra virgin olive oil).

